
UM0002

February 12, 2020

� �

�������
�	
��������������������

TREEspanFileSystemUserManual

Copyright
© 2017-2020 JBLopen Inc.
All rights reserved. No part of this document and any associated software may be reproduced,
distributed or transmitted in any form or by any means without the prior written consent of JBLopen Inc.

Disclaimer
While JBLopen Inc. has made every attempt to ensure the accuracy of the information contained in this
publication, JBLopen Inc. cannot warrant the accuracy of completeness of such information. JBLopen
Inc. may change, add or remove any content in this publication at any time without notice.

All the information contained in this publication as well as any associated material, including software,
scripts, and examples are provided “as is”. JBLopen Inc. makes no express or implied warranty of any
kind, including warranty of merchantability, noninfringement of intellectual property, or fitness for a
particular purpose. In no event shall JBLopen Inc. be held liable for any damage resulting from the use
or inability to use the information contained therein or any other associated material.

Trademark
JBLopen, the JBLopen logo, TREEspanTM and BASEplatformTM are trademarks of JBLopen Inc. All other
trademarks are trademarks or registered trademarks of their respective owners.

Contents

1 Introduction 1
1.1 About the User Manual . 1

1.1.1 Audience . 1
1.1.2 Roadmap . 1

1.2 Notation and Conventions . 2
1.2.1 Storage Devices and Media . 2
1.2.2 Size and Speed Units . 2
1.2.3 Text Formatting . 2
1.2.4 Abbreviations and Acronyms . 2

2 Context and Concepts 4
2.1 File System Basics . 4

2.1.1 The File Abstraction . 4
2.1.2 The Directory Abstraction . 5
2.1.3 File System Integration . 5

2.2 Flash Memory . 7
2.2.1 Flash vs Block Devices . 7
2.2.2 Copy-on-Write and Flash Translation Layers . 8
2.2.3 Wear-leveling . 9
2.2.4 Bad block management . 10
2.2.5 Bit Errors and Error Correction . 10
2.2.6 Managed and Unmanaged flash . 11
2.2.7 Flash File Systems . 12
2.2.8 NOR and NAND flash . 13

2.3 Fail-Safety . 14
2.3.1 Failures and Corruption . 14
2.3.2 Journaled File Systems . 15
2.3.3 Transactional File Systems . 16

3 TSFS Key Features 17
3.1 Overview . 17
3.2 Log Structure . 17
3.3 Built-in Flash Support . 17

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents ii

3.4 Fail-Safety and Write Transactions . 18
3.5 Snapshot Support . 18
3.6 RAM Usage and Scaling . 18
3.7 High-speed Random Write Accesses . 18

4 Performances and Space Management 19
4.1 Preliminary Notions . 19

4.1.1 Net versus Raw Troughput . 19
4.1.2 Sustained versus Burst Throughput . 20
4.1.3 Random versus Sequential Throughput . 20
4.1.4 CPU Bound versus I/O Bound Perfomances . 20
4.1.5 Read/Write Amplification . 21
4.1.6 Read and Write Cache . 21

4.2 Average Net Write Throughput . 22
4.2.1 Raw Throughput . 22
4.2.2 Update Size and Alignment . 23
4.2.3 Transaction Size . 24
4.2.4 Available Disk Space . 24
4.2.5 Read Caching . 27
4.2.6 Write Buffering . 27
4.2.7 Other Factors . 27

4.3 Worst Case Write Latency . 28
4.3.1 Block Erase Time . 28
4.3.2 Latency vs Throughput Trade-off . 29

4.4 Average Net Read Throughput . 30
4.4.1 Raw Read Throughput . 30
4.4.2 Read Size and Alignment . 30
4.4.3 Read Caching . 31
4.4.4 Other Factors . 31

5 Usage 33
5.1 Initializing and Terminating a File Sytem Instance . 33
5.2 Creating a File or Directory . 34
5.3 Opening and Closing a File or Directory . 35
5.4 Writing to a File . 35
5.5 Reading From a File . 36
5.6 Reading a Directory . 37
5.7 Deleting a File or Directory . 38
5.8 Truncating a File . 39
5.9 Starting and Ending a Write Transaction . 39
5.10 Recovering from Unexpected Interruptions . 40
5.11 Creating and Deleting Snapshots . 41

6 Advanced Configuration 44
6.1 Extended Configuration . 44

6.1.1 obj_cache_entry_cnt_log2 . 45
6.1.2 obj_cache_assoc_log2 . 45
6.1.3 rd_cache_blk_cnt_log2 . 45
6.1.4 rd_cache_blk_sz_log2 . 45
6.1.5 wr_buf_sz_log2 . 45
6.1.6 max_gc_wr_amp . 46

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents iii

6.2 Stored Parameters . 46
6.2.1 blk_sz_log2 . 46
6.2.2 ext_sz_log2 . 46
6.2.3 bf_log2 . 47

7 API Reference 48
7.1 tsfs_commit . 48
7.2 tsfs_create . 48
7.3 tsfs_destroy . 49
7.4 tsfs_dir_close . 49
7.5 tsfs_dir_create . 50
7.6 tsfs_dir_delete . 50
7.7 tsfs_dir_exists . 51
7.8 tsfs_dir_open . 51
7.9 tsfs_dir_read . 52
7.10 tsfs_drop . 52
7.11 tsfs_file_append . 53
7.12 tsfs_file_close . 53
7.13 tsfs_file_create . 54
7.14 tsfs_file_delete . 54
7.15 tsfs_file_exists . 55
7.16 tsfs_file_extent_min_sz_set . 56
7.17 tsfs_file_mode_reset . 56
7.18 tsfs_file_mode_set . 56
7.19 tsfs_file_open . 57
7.20 tsfs_file_read . 57
7.21 tsfs_file_seek . 58
7.22 tsfs_file_size_get . 58
7.23 tsfs_file_truncate . 59
7.24 tsfs_file_write . 59
7.25 tsfs_format . 60
7.26 tsfs_media_get . 60
7.27 tsfs_mount . 61
7.28 tsfs_revert . 61
7.29 tsfs_sshot_create . 62
7.30 tsfs_sshot_delete . 62
7.31 tsfs_sshot_exists . 63
7.32 tsfs_trace_data_get . 63
7.33 tsfs_unmount . 64
7.34 tsfs_file_pos_offset_t . 64
7.35 tsfs_file_size_t . 64
7.36 tsfs_cfg_t . 64
7.37 tsfs_dir_hndl_t . 65
7.38 tsfs_file_hndl_t . 65
7.39 TSFS_FILE_MODE_RD_ONLY . 65
7.40 TSFS_MAX_INSTANCE_NAME_LEN . 65
7.41 TSFS_MAX_PATH_LEN . 65
7.42 RTNC_* . 66
7.43 TSFS_FILE_SEEK_* . 66

8 Document Revision History 67

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

Chapter

1
Introduction

1.1 About the User Manual
Welcome to the TREEspanTM File System (TSFS) User Manual. This user manual covers every aspects of
TSFS, including theoretical background, usage examples, performance analysis and API descriptions. A
separate API Reference Manual is also available for more convenience.

1.1.1 Audience
This user manual has been written with application designers in mind. Some background in embedded
programming is assumed but experience with file systems and storage technologies is not required.
Much effort as been spent in making this user manual both complete and easy to read, providing the
reader with background information where needed, while limiting the scope and the level of details to
include only those aspects relevant to an application designer.

1.1.2 Roadmap
To facilitate the navigation of this user manual, a short description of each chapter follows.

Chapter 2 introduces basic notions regarding file systems and storage technologies, with the emphasis
on flash and flash-based devices. It does so in a broad and generic language, independent of TSFS
peculiarities and terminology. Readers with an extensive knowledge of file systems and storage
technologies may only want to skim through this chapter.

Chapter 3 summarizes the most important characteristics and features of TSFS. It is meant as a quick
reference to evaluate and compare TSFS with other available solutions.

Chapter 4 is a comprehensive presentation of TSFS performances, including theoretical concepts and
in-depth analysis of key performance metrics. Above all, this chapter provides application designers
with rational performance expectations for various storage devices and configurations.

Chapter 5 introduces the TSFS API through a series of short tutorials. Each tutorial covers a group of
logically-related interfaces through a hands-on approach, giving complete examples and descriptions of
function parameters, returned values and side-effects.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com/downloads/rm0002_tsfs.pdf
https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 1 Introduction 2

Chapter 6 describes optional TSFS configurations that can be used to tailor overall performances
according to specific application requirements. These configurations should typically be left untouched
— at least in the early stages of the application design — as the default values are suitable for a wide
range of applications.

Finally, Chapter 7 contains complete descriptions of all TSFS public functions, macros and data types,
including function parameters, returned values, attributes and side-effects.

1.2 Notation and Conventions
1.2.1 Storage Devices and Media
A storage device and a storage media are essentially the same thing: some kind of non-volative memory
where data can be stored. However, both expressions are used in a subtly different ways throughout
this manual. Device is used whenever the emphasis is put on physical aspects like the I/O interface, the
dimensions or the memory technology involved. Media, on the other hand, is used when more abstract
or higher-level characteristics are referred to, like the write throughput or the read granularity.

1.2.2 Size and Speed Units
Sizes and speeds are given using either binary or decimal units, whichever is best to describe the
situation at hand. The most common size units, along with their corresponding values, are given in
Table 1.

Bit unit symbol Value in bits Byte unit symbol Value in bytes

kbit 1000 bits kB 1000 bytes

Kibit 1024 bits KiB 1024 bytes

Mbit 1000 kbit MB 1000 kB

Mibit 1024 Kibit MiB 1024 KiB

Gbit 1000 Mbit GB 1000 MB

Gibit 1024 Mibit GiB 1024 MiB

Tbit 1000 Gbit TB 1000 GB

Tibit 1024 Gibit TiB 1024 GiB

Table 1 – Most common size units and their corresponding values.

1.2.3 Text Formatting
Monospace is used throughout this user manual to indicate an element of code like a function name or
a data type (e.g. tsfs_file_write(), RTNC_SUCCESS, tsfs_file_hndl_t).

Italic is used to put the emphasis on a word or expression, most notably when it appears for the first
time, usually along with a definition.

1.2.4 Abbreviations and Acronyms
Abbreviations and acronyms are used throughout this manual for the sake of conciseness. When a word
or expression appears for the first time, it is written in full, along with the abbreviated form between

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 1 Introduction 3

parentheses. Subsequent occurrences of the same word or expression can then appear solely in the
abbreviated form. A complete list of abbreviations and acronyms is given in Table 2.

Abbreviation Meaning

API Application Programming Interface

COW Copy-On-Write

CPU Central Processing Unit

ECC Error Correction Code

eMMC Embedded Multi Media Card

FTL Flash Translation Layer

HDD Hard Disk Drive

I/O Input/Output

KOPS Kilo Operations Per Second

MLC Multi-Level Cell

PDF Probability Density Function

RAM Random Access Memory

RTOS Real-Time Operating System

SD Card Secure Digital Card

SDD Solid-State Drive

SLC Single-Level Cell

TSFS TreeSpan File System

UFS Universal Flash Storage

Table 2 – Abbreviations and Acronyms used in this manual.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

Chapter

2
Context and Concepts

This chapter introduces basic notions regarding file systems and storage technologies, with the
emphasis on flash and flash-based devices. It does so in a broad and generic language, independent of
TSFS peculiarities and terminology. Readers with an extensive knowledge of file systems and storage
technologies may only want to skim through this chapter.

2.1 File System Basics
A file system provides a uniform data storage abstraction made of separate logical data containers called
files. Each file is identified by a name (or sometimes a numeric ID). The content of a file is exposed as a
contiguous array of bytes, where each byte can be fetched or updated independently. A file can shrink
or grow dynamically.

The file system is responsible for dynamically allocating the needed disk space as files are updated. It
must also keep track of the allocated portions of disk space for each file, along with their respective
logical positions inside the file. All this bookkeeping is usually supported by various on-disk data
structures, often referred to as metadata.

2.1.1 The File Abstraction
Through the file system interface, the application can:

1. create a new file;
2. delete an existing file;
3. read bytes from a file;
4. write bytes to a file.

Before a file can be accessed (read from or written to), it must first be opened. When a file is opened, a
corresponding in-RAM structure is created whose primary function is to keep track of the current file
position. We refer here to this structure as the file descriptor, but the exact naming varies across file
systems.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 5

When a file is opened, the current position is 0. Read or write accesses are performed at the current file
position. After each access, the current position is incremented by the size of the access. This is shown
in Figure 1(a). The position can also be modified through a dedicated file system interface.

A file can usually be opened multiple times, resulting in as many file descriptors and access positions.
This is illustrated in Figure 1(b).

130

128

129

2

0

1

3

Array of bytes

File position after
128-byte access

Initial file position

(a) The position is automatically
incremented by the size of the
access. In this case from posi-
tion 0 to position 128.

N-1

N-3

N-2

N

2

0

1

3

Opened file A
current position

Opened file B
current position

Array of bytes

(b) The same file opened
twice. Two independent in-
RAM file descriptors, each
with its own current position.

Figure 1 – The file abstraction and the relation between in-RAM file descriptors and on-disk
byte arrays.

2.1.2 The Directory Abstraction
Most file systems — including TSFS — have their files organized into a tree hierarchy supported by some
kind of directory abstraction. A directory is a file container that can be used for grouping related files.

Like files, directories have names. A directory can contain multiple files. It can also contain other
directories. However, files and directories have a single parent directory, hence the tree structure. A
simple example of a directory tree is given in Figure 2.

The location of a file or directory within the tree hierarchy is specified using a path. The path is formed
by concatenating the names of the nodes on the path between the root directory (/) up to the file or
directory whose path is being formed. Directory names are separated using a dedicated character,
usually ’/’. Figure 2 shows the path for each file or directory and its parent directory.

On systems equipped with a human interface, directories are used to logically organize files and
facilitate the navigation. This logical grouping can also lead to improved performances on some systems,
assuming that files contained in the same directory tend to be accessed together. This is not the case
for TSFS though, since file indexing structures are separate from the directory tree structure.

2.1.3 File System Integration
The file system does not usually interacts directly with the underlying physical storage media. Instead,
the file system interacts with an intermediate media driver as depicted in Figure 3. All media drivers

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 6

index log

cfg cert

/

http

Path

/

/http

/cfg

/cert

/http/index

File or
Directory

/

http

cfg

cert

index

/http/loglog

Parent
Path

/

/

/

/http

/http

Figure 2 – A simple example of directory hierarchy

present a common media driver interface to the overlying file system, effectively hiding media
specificities.

File System

Application

NAND SD/MMCNOR

NOR
Driver

NAND
Driver

SD/MMC
Driver

Media Driver Interface
Homogenous, block-oriented,
raw access.

Physical storage media interface
Heterogeneous, varying read/write
access restrictions.

File System Interface
Homogenous, byte-oriented,
logically organized into files
and directories

Database HTTP server

Figure 3 – Storage Layers

In many common scenarios, the application interacts directly with the file system. This is not, however,
always the case. Databases and HTTP servers for instance, need a file system for internal storage
purposes. These software components generally include some kind of connection layer for the file
system. Once the integration with the file system is done, file operations are mostly driven by the
overlying modules, keeping only minimal setup operations (e.g. format, mount, etc.) under the
application’s responsibility.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 7

2.2 Flash Memory
Flash memories are solid-state storage devices. Unlike electromechanical hard drives, flash memories do
not have moving parts. They can thus withstand a fair amount of shocks and vibrations, which is a great
asset for many embedded applications. Other qualities of flash memories include their low cost, high
density (more about that later on) and efficient random accesses.

2.2.1 Flash vs Block Devices
Most file systems are designed to run on top of block devices — although this is not the case for TSFS,
as we will see later on. A block device is a storage device made of blocks of data that can be individually
fetched or updated. Accesses smaller than a block are not allowed. Partial block updates can however
be achieved through a read-modify-write procedure, such as depicted in Figure 4.

RAM

Flash

1) Read

4) Write
3) Modify

1101
1000
1110
0110
1101

0101
0000
0110
0110
1101

1010
0001
1100
1101
1010

1011
0000
1100
1100
1011

0101
0011
0001
0010
1101

1101
1000
1110
0110
1101

0101
0011
0001
0010
1101

1010
0001
1100
1101
1010

1011
0000
1100
1100
1011

0101
0000
0110
0110
1101

Figure 4 – A block is partially updated through a read-modify-write procedure.

Although flash memories are also made of blocks, they do not behave like block devices. Flash
memories are made of two kinds of blocks: pages and erase blocks. The page is the elementary write
unit (much like blocks for block devices). The erase block is the elementary erase unit. An erase block
contains several pages (64 pages per block is not unusual).

A page program operation can flip bits from 1 to 0, but not the other way around. The only way to
transition from 0 back to 1, is to erase the containing block, effectively setting all the bits to 1. Page
program operations can then be used to bring selected bits back to 0.

The update procedure described in Figure 4 does not work on flash devices due to the lack of support
for in-place updates. A slightly different read-write-modify procedure, compatible with flash access
restrictions, is depicted in Figure 5. It goes as follows:

1. load the block containing the page (or portion of a page) to be modified in RAM;
2. erase the block (setting all bits to 1);
3. modify the loaded block in RAM;
4. write the whole modified block back to its original location.

Although this update procedure superficially works, it suffers a number of problems.

First, there is a performance issue. In the suggested update scheme, every single update requires a full
block to be read, erased and written. This is costly because erase blocks are usually quite larger than
pages.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 8

1111
1111
1111
1111
1111

1111
1111
1111
1111
1111

1111
1111
1111
1111
1111

1111
1111
1111
1111
1111

RAM

Flash

1) Read

2) Erase

4) Write

3) Modify

Block X

1101
1000
1110
0110
1101

0101
0000
0110
0110
1101

1010
0001
1100
1101
1010

1011
0000
1100
1100
1011

1101
1000
1110
0110
1101

0101
0000
0110
0110
1101

1010
0001
1100
1101
1010

1011
0000
1100
1100
1011

Block X Block X

1101
1000
1110
0110
1101

0101
0000
0110
0110
1101

1010
0001
1100
1101
1010

1011
0000
1100
1100
1011

1101
1000
1110
0110
1101

0101
0000
0110
0110
1101

1010
0001
1100
1101
1010

1011
0000
1100
1100
1011

Figure 5 – The third page of block X is updated in-place using a straightforward read-erase-
modify-write approach.

Second, there is a wear issue. Indeed, flash blocks can only be erased a limited number of times before
wearing out (wear and wear mitigation techniques are covered in Section 2.2.3). Some flash
technologies have longer life cycles than others, but erasing a whole block for each update is generally
not acceptable.

Finally, and perhaps most importantly, there is a fail-safety issue. More precisely, consider what could
happen if the procedure was interrupted (say because of a power outage) between the erase and write
steps. In such a scenario, the content of the whole block would be lost, which is obviously unacceptable.

A better way of dealing with flash access restrictions is through the use of copy-on-write (COW), as
discussed in Section 2.2.2.

2.2.2 Copy-on-Write and Flash Translation Layers
As previously discussed in Section 2.2.1, flash memories do not allow in-place updates. Because of that
limitation, they cannot natively provide the block device abstraction needed by most file systems. An
additional software adapter layer is therefore needed.

This software adapter is often referred to as a Flash Translation Layer (FTL). Its main purpose is to
emulate a block device for the benefits of the overlying file system. This is depicted in Figure 6.

File System

FTL

Flash

Flash access interface.
At this level pages and erase blocks are
manipulated. In-place updates are not
possible.

Block device interface. This level
hides flash-specific attributes. In-
place updates are allowed.

Figure 6 – A flash translation layer (FTL) emulates a block device on top of a flash memory.

FTLs generally use out-of-place update strategies, often referred to as copy-on-write (COW). In a COW
update scheme, modified pages are not written back to their original location, but rather copied to other
(pre-erased) pages. This approach, shown in Figure 7, has two important benefits:

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 9

1. the original page remains intact so it can be recovered if the update fails midway through;
2. a single page update requires no more than a single page write, as opposed to a whole block

erase/write in the case of the in-place update strategy discussed in Section 2.2.1.

RAM

Flash

1) Read
3) Write

2) Modify

Block X

1101
1000
1110
0110
1101

0101
0000
0110
0110
1101

1010
0001
1100
1101
1010

1011
0000
1100
1100
1011

Block Y

1111
1111
1111
1111
1111

1111
1111
1111
1111
1111

1111
1111
1111
1111
1111

0101
0011
0001
0010
1101

0101
0000
0110
0110
1101

0101
0011
0001
0010
1101

Figure 7 – A copy-on-write (COW) update as performed by an FTL. In this case, the 3rd page
of block X is updated into the 1st page of block Y.

Out-of-place updates play nice on top of flash devices, but they do not provide the expected block
device abstraction. To reconcile the COW approach with the required block device behavior, FTLs
introduce an additional level of indirection through the concept of logical blocks. Logical blocks have
fixed logical addresses, which are exposed to and manipulated by the file system. However, logical blocks
can be moved around, stored in different physical pages and thus, at different physical addresses.

The logical-to-physical address mapping is stored on the flash device along with the file system. When
the overlying file system loads a logical block, the FTL performs the logical-to-physical address
translation and loads the content of the corresponding flash page. When a logical block is updated, the
FTL moves the updated content to a new page and adjust the logical-to-physical mapping accordingly.

As a flash file system (more on this in Section 2.2.7), TSFS uses COW update strategies, but these are
built into the file system core, such that no extra translation layer (FTL) is required.

2.2.3 Wear-leveling
Flash blocks can only be erased a limited amount of times before they become unreliable. Some flash
devices can stand up to 100k erase cycles. Others, only 1000. Given this limited life span, erase
operations must be distributed across the available blocks as evenly as possible. Failing that, some
blocks can become completely unusable while others remain almost unaltered, effectively shortening
the entire flash lifetime.

Enforcing uniform block wear is often handled at the FTL level, and is commonly referred to as
wear-leveling. We distinguish between two types of wear-leveling: static and dynamic. The difference
between static and dynamic wear leveling resides in the block selection algorithm responsible for
picking the next block to be freed, erased and written to.

Dynamic wear-leveling operates in an opportunistic way, taking advantage of data being moved around
as part of COW updates (hence dynamic). Dynamic leveling never forces valid data out of a
long-standing block. Rather, the next destination block is selected among those already made available
by previous COW updates. Dynamic leveling performances thus heavily depend on the access patterns
of the overlying application.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 10

Static wear-leveling is different in that it proactively moves stale data. Leveling is thus independent of
the application’s access patterns and guaranteed across the whole flash. Although static leveling may
come at the expense of slightly degraded write performances, it is usually required in order to achieve a
high level of reliability.

TSFS supports both static and dynamic wear-leveling. Being log-structured (more on this in
Section 2.2.7), TSFS architecture naturally lends itself to wear-leveling, such that it comes at a very low
cost in terms of performance and code complexity.

2.2.4 Bad block management
Despite efficient wear-leveling, flash memories eventually develop unreliable blocks over their
estimated lifetime. In fact, unreliable blocks may already exist as flash devices leave the factory.
Unreliable blocks are most often referred to as bad blocks.

The initial bad block identification method may vary from one flash manufacturer to another. Usually,
some kind of special bad block mark is written in a specific location within the block before the flash
comes out of the factory. The flash management software is then responsible for locating these marks.

Sometimes, a block erase or page write operation returns an error. When such an error occurs, valid
data should be moved out of the defective block and copied to a healthy block. The bogus block should
then be considered bad and should not be further accessed.

The details of bad block management algorithms go beyond the scope of this introductory text. The one
thing to remember, though, is that the amount of available blocks may decrease as the flash memory
approaches its end-of-life. Flash management software is therefore responsible for keeping spare blocks,
enough to compensate for expected bad block occurrences.

2.2.5 Bit Errors and Error Correction
Voltage thresholds within flash cells are purposely modified as part of normal flash operation. But they
can also be subject to undesirable side effects. While these side effects can be mitigated by proper flash
management, they can sometimes be significant enough to cause bit errors.

The unwanted variations in voltage thresholds are often modeled as Gaussian noise, where each logical
symbol — ’0’ and ’1’ for SLC — is associated with a normal probability density function (PDF)
representing the corresponding voltage threshold fluctuations. Various scenarios are illustrated in
Figure 8. These graphical representations are not meant to be realistic — let alone accurate. They are
solely intended to support the reader’s intuition.

Figure 8(a) shows the ideal — but impossible — case where nominal voltage thresholds occur with a
probability of 1. In this case, the probability of a bit error is null (i.e. the probability that ’0’ is read while
’1’ is intended, or reciprocally).

Figure 8(b) and Figure 8(c) illustrate the impact of wear and aging on bit errors. The bit error probability
is graphically represented by the colored surfaces. The greater the surface, the higher the probability of
a bit error. As wear progresses, noise becomes more pronounced which translates into a higher variance,
more overlap between PDFs and, therefore, a higher bit error probability.

Figure 8(d) shows the PDFs for an unused MLC flash. Comparing with the SLC case (see Figure 8(b)),
voltage levels are closer from each other, PDFs overlap more and, therefore, the bit error probability is
higher.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 11

To palliate these bit errors, error correction codes (ECC) must be used. It is crucial that the ECC be
selected based on the situation at hand. From the previous discussion, it is clear that the selected
algorithm must be strong enough to sustain the degradation of reliability resulting from the flash aging
process. It must also be adapted to the underlying flash technology, MLC requiring much stronger ECC
than SLC.

'0' is read '1' is read

voltage (V)

V -1 '0' intended
'1' intended

(a) Ideal SLC flash. Nominal voltage levels oc-
cur with a probability of 1. Other levels never
occur. The probability of a bit error is null.

voltage (V)

'0' is read '1' is read
V -1 '0' intended

'1' intended

(b) Unused SLC flash. The variance is low,
density functions overlap slightly. The proba-
bility of a bit error is small.

'0' is read '1' is read
V -1

voltage (V)

'0' intended
'1' intended

(c) Used SLC flash. The variance is high, den-
sity functions overlap considerably. The prob-
ability of a bit error is significant.

'00' is read '01' is read

voltage (V)

V -1 '00' intended
'01' intended
'10' intended
'11' intended

'10' is read '11' is read

(d) MLC flash. Voltage levels are closer than SLC levels, density
functions overlap considerably. The probability of a bit error is
significant.

Figure 8 – Voltage probability density functions for various scenario.

2.2.6 Managed and Unmanaged flash
To summarize what has been previously discussed, flash management includes the following tasks:

• logical to physical address translation;
• wear-leveling;
• bad-block management;
• error correction (ECC).

Although these tasks must invariably be performed to achieve the expected level of performance and
reliability, the total workload can be distributed between the host (e.g. the microcontroller unit) and the
storage device in various ways. This flexibility roughly translates into three categories of flash devices
(illustrated in Figure 9):

• managed, where the flash management is entirely performed inside the storage device;

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 12

• unmanged, where the flash management is entirely performed inside the host;
• semi-managed, where the flash management is shared between the host and the storage device.

File System

Application

Flash Management

Flash Memory

Flash
Device

Host

(a) Managed flash. Flash
management is handled by
the flash device itself.

Host

File System

Application

Flash management

Flash Memory
Flash
Device

(b) Unmanaged flash. Flash
management is handled by
the host.

Host

File System

Application

Flash management

Flash Memory

Flash
Device

(c) Semi-managed flash.
Flash management is shared
between the host and the
flash device.

Figure 9 – Various distributions of the flash management workload between the host and
the flash device.

A managed flash device essentially emulates a block device. It can be used as a drop-in replacement for
other storage technologies exposing a block device interface. Perhaps the most telling example of such
interchangeability is the solid state drive (SSD), which has made its way as the predominant non-volatile
PC storage technology, in lieu of hard disk drives (HDD). On the embedded side, SD cards, eMMC and
UFS modules are popular alternatives.

Given a block device interface, file systems can be deployed without the need for an extra adaptation
layer (FTL). This is assuredly one of the most important benefit of managed flash. However, managed
flash devices are more expensive, take up more physical space and consume more energy than
equal-sized bare flash counterparts.

The unmanaged flash category includes all bare flash chips. In this case, the host is responsible for
performing all the required flash management tasks. Bare flash chips are popular in embedded design,
where cost, size and energy consumption must be kept as low as possible.

The semi-managed flash category includes all sorts of hybrid solutions. Perhaps the most notorious
members of this category are flash devices with built-in ECC. In this case, the flash device returns a read
status reporting whether bit errors have occurred, the number of erroneous bits, and whether the errors
have been corrected. The ECC calculations are taken care of by the flash device but the host must still
respond with an appropriate action when errors occur. That includes refreshing (moving to another
block) data when the number of bit errors is close to the ECC limits.

TSFS is a log-structured flash file system. As such, it supports unmanaged flash devices without the
need for an extra adaptation layer (FTL). Unlike other flash file systems, TSFS also supports managed
flash. On managed flash devices, TSFS log structure allows for a high-speed random write accesses.
This is discussed at length in Section 4.2.

2.2.7 Flash File Systems
As discussed in Section 2.2.1, file systems usually rely on the presence of a block device abstraction. On
flash devices, this abstraction is provided by an extra adaptation layer, called the flash translation layer
(see Section 2.2.2).

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 13

Flash file systems are different. Rather than deferring flash management to a dedicated translation layer,
they directly deal with flash-specific access restrictions and other flash peculiarities. The end result is
typically more efficient than the combination of a separate file system and FTL : smaller RAM usage,
lower write amplification, simpler integration and configuration.

A special but important category of flash file systems — which TSFS belongs to — are log-structured file
systems. In a log-structured file system, all updates are performed in a circular stream of contiguous
write operations. This approach has long been used to work around poor random write performances of
electromechanical hard drives, but it makes even more sense on flash-based storage technologies,
especially raw flash memories where in-place updates are simply not allowed.

2.2.8 NOR and NAND flash
All flash memories share some basic qualities — inexpensive, robust, physically small. But all flash
memories are not equal and choosing the right technology for the job at hand can be a daunting task.
Without providing all the answers, we give here some basic guidelines.

Flash memories can be categorized by transistor configuration. There are two widely used
configurations: NOR and NAND. NAND flash devices are further categorized based on the number of
bits stored per physical cell. Table 3 lists currently available NAND technologies along with their
corresponding number of bits per cell and typical endurance specifications.

SLC MLC TLC QLC

#bits per cell 1 2 3 4

Endurance 100000 10000 3000 1000

Table 3 – Available NAND flash technologies along with typical endurance specifications.

SLC and MLC technologies are widely used in embedded devices. On the other hand, TLC and QLC are
more rarely seen. While higher densities are attractive, squeezing more bits into a single physical cell
comes at the expense of an increased bit error rate and decreased endurance. This might be good
enough for some consumer applications, but not for most industrial, military or medical applications.

Table 4 is a side-by-side comparison of the NOR, NAND SLC and NAND MLC technologies based on
various performance metrics. The given values are provided as guidance and may significantly vary
across actual devices. Figure 10 roughly depicts the available densities and costs.

Looking at Table 4 and Figure 10, important observations can be made:

• NOR has the highest cost per byte but the lowest absolute cost. In other words, for applications
requiring little data space, NOR may be the cheapest solution. However, price goes up rapidly as
size increases.

• NOR write energy consumption can be as much as 100 times greater than that of NAND flash.
Battery-powered devices are probably better served by NAND flash, unless very few writes are
performed.

• The write throughput is higher on NAND, but NOR exhibits finer write access granularity. For
workloads dominated by small write accesses, the gap between NOR and NAND net write
throughputs can close rapidly.

• The read granularity is much finer on NOR. Given its high read throughput, NOR is usually
preferred over NAND for workloads dominated by small random read accesses.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 14

4

8

12

16

20

24

28

32

1 2 4 8 16 32 64 128 256 512

Cost ($)

Size (Gbit)

NOR
NAND (SLC)
NAND (MLC)

Figure 10 – Flash memories cost versus size

NOR NAND (SLC) NAND (MLC)

Write Throughput 1MB/s 10MB/s 5MB/s

Read Throughput 40MB/s 30MB/s 20MB/s

Erase Throughput 0.1MB/s 300MB/s 600MB/s

Erase-Write Throughput 100kB/s 10MB/s 10MB/s

Read Granularity Byte Page (4KiB typical) Page (8KiB typical)

Write Granularity Byte (typical) Page (4KiB typical) Page (8KiB typical)

Erase Granularity Block (64KiB typical) Block (256KiB typical) Block (2MiB typical)

Write Energy Consumption 1uJ/byte 10nJ/byte 20nJ/byte

Read Energy Consumption 1nJ/byte 1nJ/byte 2nJ/byte

Erase Energy Consumption 600nJ/byte 0.2nJ/byte 0.1nJ/byte

Table 4 – Typical NOR and NAND flash characteristics

Beyond these general observations, application designers should evaluate combined hardware/software
performances along with application requirements in the early stages of the design. Chapter 4 offers a
comprehensive analysis of TSFS performances for various storage devices and configurations.

2.3 Fail-Safety
2.3.1 Failures and Corruption
Unexpected failures can lead to both data and metadata corruption. When data corruption occurs, the
file system can still operate normally. Only those modules whose files have been corrupted are
jeopardized. The rest of the application can still run normally. This is unlike metadata corruption which
can trigger unrecoverable errors with disastrous consequences for the entire application.

Whether metadata or data corruption occurs depends (among other things) on the timing. This is
illustrated in Figure 11, where some file is updated through a succession of file_write() calls. This

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 15

situation is typical of large updates where the data to be written does not fit into a single application
buffer.

file_write()

sector_write()

file_write()

sector_write()

: Data corruption but no metadata corruption.

: Both data and metadata corruption is likely.

: Both data and metadata corruption is likely.

: No corruption.

Data update
begins here.

Data update
ends here.

Figure 11 – Timing determines whether corruption occurs or not.

First, consider the two failures represented by blue check marks on the timeline of Figure 11. As both
failures happen respectively before and after the update procedure, both the data and metadata are
either untouched or fully updated. Therefore, nothing is corrupted.

Next, consider the failure represented by a red ’X’. Since the failure happens midway through the update
procedure, the file is only partially updated. As for the metadata, when the first file_write()
completes, the file system is returned to a consistent state. Therefore, the metadata is safe. The overall
outcome is nonetheless disastrous for the application as the updated file is incomplete and the old
version is lost.

Now, consider the failure represented by a red lightning bolt. In this case, data corruption is still
probable. Furthermore, since the failure happens during a call to file_write(), metadata updates
may be incomplete. In this case, the file system could be irremediably corrupted, leading to the loss of
the entire content.

Finally, consider the failure represented by a red star. This scenario is similar to the previous one in that
both data corruption and metadata corruption are possible. But in this case, since the physical sector
update itself is interrupted, the actual outcome depends on the underlying media. Some media feature
atomic updates, in which case a sector is guaranteed to be either untouched or fully updated (but never
in-between). Others, guarantee in-order updates, where a contiguous portion of the sector is updated,
the rest being left untouched. Still others, offer no guarantee at all, and the updated sector can end up
in pretty much any random state.

2.3.2 Journaled File Systems
Several file systems use a mechanism known as journaling to better cope with unexpected failures. In
the embedded world, a popular solution is the FAT file system with an added journal. But regardless of
the implementation, the purpose of journaling remains the same: protecting against metadata
corruption by either rolling back or completing partial updates upon recovery.

With a few (performance-hogging) exceptions, journaled file systems offer no additional protection for
application data. Besides, most journal implementations rely on atomic sector updates, which, as we
have seen, is not guaranteed for all media.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 Context and Concepts 16

Finally, journaling is generally not compatible with write-back caching or, at the very least, hampers
write-caching performances as it requires strict sector write ordering.

2.3.3 Transactional File Systems
Transactional file systems are different than journaled file systems in that they protect both data and
metadata. Data protection is achieved through write transactions.

A write transaction is a sequence of write operations that either succeeds or fails as a whole. Partial
operations (or sequences of operations) can never happen, and thus, only one of two possible outcomes
can be observed:

1. the transaction completes without interruption and the file system state reflects the result of the
entire sequence of write operations;

2. a failure occurs during the transaction and the file system is returned to its initial state (i.e. the one
it was in when the transaction started).

This all-or-nothing behavior is illustrated in Figure 12.

sector_write() sector_write()

: No corruption. File system state returned to that of the latest commit.

file_write() file_write()

commit() commit()

Data update
begins here

Data update
ends here

Figure 12 – In a transactional file system, data and metadata are protected against corruption,
regardless of the failure timing.

A transaction is ended by the application using a dedicated commit() interface. Depending on the
actual implementation, a new transaction is either explicitly started using a dedicated interface or
automatically started each time a transaction is ended. For the purposes of the following discussion, we
assume the latter.

Now, consider the various failure scenarios shown in Figure 12 — respectively represented by a check
mark, a lightning bolt, an ’X’, a star and a circle. In Section 2.3.1, we have seen how these failures could
lead to data and/or metadata corruption. Using transactions, this is no longer the case.

Since all the file write operations are now part of a single transaction, they either succeed or fail as a
whole, leaving no room for half-complete updates. No matter how and when it fails, the file system is
always returned to the state it was in at the time of the latest commit. This is represented by the dotted
arrows in Figure 12.

TSFS is a transactional file system, which means that it protects both data and metadata against abrupt
failures.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

Chapter

3
TSFS Key Features

3.1 Overview
The TREEspanTM File System (TSFS) is an embedded transactional file system, supporting a wide range of
storage technologies, including native flash support with both dynamic and static wear-levelling.
Through its support for snapshots and write transactions, TSFS provides the application with flexible,
robust and fail-safe data storage. Being RTOS and platform agnostic, with a minimum RAM requirement
of less than 4KiB, TSFS can be deployed on almost any platform.

3.2 Log Structure
TSFS is a log-structured file system, meaning that all updates are performed out-of-place, in a circular
stream of contiguous write operations. The log structure naturally lends itself to write transactions and
snapshots, which come at no additional cost in terms of performance.

3.3 Built-in Flash Support
TSFS is a flash file system (see Section 2.2.7). Its integrated design improves overall performances by
factoring various file management aspects into flash management algorithms — and reciprocally. Where,
for instance, two separate data structures are typically used to support garbage collection and data
block indexing (the former by the FTL, the latter by the file system), TSFS uses only one unified
structure. This means less RAM usage, less pressure on the read cache and less write amplification.

TSFS flash support goes down to specific characteristics of each supported flash technology. On NOR
flash, for instance, TSFS leverages the fast and granular read operations to minimize the write
amplification and avoid costly write and erase operations as much as possible. In contrast, NAND flash
erase and write operations are much faster, while read operations are slower. Also, read/write
granularity is coarser (i.e. page-oriented). In this case, TSFS metadata is updated such as to minimize
random read operations at the expense of a slightly higher write amplification.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 3 TSFS Key Features 18

3.4 Fail-Safety and Write Transactions
TSFS is designed to handle untimely interruptions in a centralized and strictly defined manner,
effectively protecting the application against data corruption and taking the burden of handling such
failures off the application designer.

Upon recovering from an unforeseen interruption, TSFS always returns to the latest consistent state, as
defined by the application through the dedicated write transaction interface. The application can also
choose to drop uncommitted modifications, which is useful for handling non fatal errors such as
network errors. In this case, instead of trying to resume the update procedure, partial updates can
simply be canceled and started over.

3.5 Snapshot Support
Snapshot support is arguably one of the most unique TSFS feature. Snapshots provide a space-efficient
way of saving an entire file system state that can be later accessed or reverted to. Frozen versions of
files and directories, isolated from potential concurrent updates, can thus be read from, protecting the
application against data corruption induced by race conditions.

3.6 RAM Usage and Scaling
One of the defining characteristics of embedded systems — as opposed to general purpose computers —
is the small amount of available resources, most notably the small amount of available RAM.

Unlike other log-structured file systems, TSFS has a very low minimum RAM requirement (under 4KiB).
Minimizing RAM usage, while maintaining the best possible performances, is achieved through a
combination of flexible read caching and strategic on-disk layout. Incidentally, this approach makes for
very low mount times, as very few data structures must be loaded up front.

Even with the most frugal setup, the on-disk tree-based indexing allows for impressive performances,
while more capable platforms can reach the highest possible performances by increasing the amount of
memory dedicated to the built-in read cache. In both cases, the RAM usage is independent of the size
of the storage media and the number/size of stored files.

3.7 High-speed Random Write Accesses
TSFS log-structured approach is most natural on raw flash memories, where in-place updates are simply
not allowed (see Section 2.2.1). Still, managed flash devices also benefit from the log structure because
sequential write speed is typically much higher than random write speed on these devices. The overall
random write performance gain, in this case, can be as much as one order of magnitude. TSFS
performances are separately discussed in Chapter 4.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

Chapter

4
Performances and Space Manage-
ment

File system performance is an immensely complex topic. To be fair and accurate, a performance
assessment must take into account an array of factors, such as the characteristics of the underlying
storage device, the application’s access patterns, the amount of available disk space and available
system resources. Besides, to be useful, performances should be examined in relation to the actual
application requirements.

An exhaustive analysis of TSFS performances goes beyond the scope of this user manual. We therefore
focus on those aspects that are the most crucial from an application design standpoint. Above all, the
purpose of this chapter is to provide application designers with a performance baseline for various
storage devices and configurations.

4.1 Preliminary Notions
This section covers fundamental concepts related to file system performance, including basic definitions
and descriptions of key metrics. Actual performances are discussed in Section 4.2.

4.1.1 Net versus Raw Troughput
Net throughput is measured at the application level. The net write throughput is the amount of
application-provided data written per unit of time. Conversely, the net read throughput is the amount of
application-requested data read per unit of time.

The net throughput can widely differ from the raw throughput which is measured at the storage device
interface. Such disparity can be observed, for instance, when comparing NOR and NAND flash
performances under small random write workloads. Although NOR exhibits a far lower raw write
throughput than NAND, the net write throughput for NOR under this type of workload can approach,
even exceed that of NAND.

The gap between raw and net throughputs is determined by numerous factors. Some obvious, some
more subtle. Some under the control of the application designer, some not. Generally speaking, a sound
application design is not possible without factoring in at least the most determining factors. These are
discussed in Section 4.2 and Section 4.4.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 20

4.1.2 Sustained versus Burst Throughput
Sustained throughput is measured when read/write accesses are performed for an extended period of
time without interruption. With no pause available for background tasks to progress, the sustained
throughput captures the impact of internal file system tasks (such as garbage collection and block
erasing) on overall performances.

On the contrary, burst throughput is measured when pauses between successive accesses (or short
streaks of accesses) allow for the progression of background tasks. In this case, internal file system tasks
do not affect — or only marginally — the measured throughput. Note that proper synchronization
between background tasks execution and application requests is not always possible. As a result, the
potential gains associated with burst accesses are not always significant in practice.

Real-life applications usually generate some mix of sustained and burst accesses. Still, designing based
on sustained performances often makes more sense in terms of consistently meeting application
requirements. Therefore, unless specified, sustained performances are assumed throughout this chapter.

4.1.3 Random versus Sequential Throughput
Random read/write throughput is measured when accesses are performed at random positions.
Although large random accesses are possible, most random performance tests focus on small accesses
(4KiB is common). Also, unless specified, the probability distribution is assumed to be uniform.

Random throughput can be measured at the storage device interface or at the application level. The
former is referred to as the raw random throughput while the latter is known as the net random
throughput.

While real-life situations are generally not made of purely random operations, random throughput is still
of critical importance for many applications. Besides, it represents a hallmark of file system
performances since high random throughput is usually much trickier to obtain than high sequential
throughput.

Sequential read/write throughput is measured when accesses are performed at contiguous positions.
Although small sequential accesses are possible, most sequential performance tests focus on large
accesses. A high sequential throughput is often required for audio/video streaming applications, to
mention but a few.

TSFS is designed in such a way that the random or sequential nature of read/write accesses have little
impact on performance. Consequently, we do not cover sequential performances as such, although we
do discuss the impact of the access size on random performances.

4.1.4 CPU Bound versus I/O Bound Perfomances
Performances that are primarily limited by the finite amount of CPU power — or sometimes other
system resources — are said to be CPU bound. Conversely, performances that are primarily limited by
the finite speed of I/O operations are said to be I/O bound.

Real-life performances are rarely purely CPU bound or I/O bound. More often than not, performances
are limited by a complex mix of factors including CPU-related and I/O-related factors. CPU-related
factors include limited CPU power, memory latency and limited interconnect bandwidth, to name but a
few. I/O-related factors include limited bus bandwidth, internal flash load/program latency and
managed flash FTL-induced read/write amplification.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 21

4.1.5 Read/Write Amplification
When data is written to or read from a file, it typically goes through a series of layers, most notably, the
file system itself, possibly an FTL, and the storage device driver. Taken together these layers are
commonly referred to as a storage stack. Each layer of the stack may pass more data to the next layer
than it received from the previous one. On the read path this phenomena is called read amplification,
whereas, on the write path, it is known as write amplification.

The amplification of a given layer is the ratio of data exiting to data entering that layer. This is depicted
in Figure 13(a). The end-to-end write amplification is the product of each layer’s contribution. This is
shown Figure 13(b).

Storage Layer

Ro

Ri

Wi

Wo

GR = Ro / Ri GW = Wo / Wi

(a) The amplification of a
given layer is the ratio of
data exiting to data enter-
ing that layer.

File
System

Gfs

Driver

Gdrv

FTL

GFTL

Gtot = Gfs x GFTL x Gdrv x Gsto

Storage
DeviceApplication

Gsto

(b) The total write amplification is the product of all the intermediate layers’
partial write amplifications.

Figure 13 – Amplification can be observed at various levels within the storage stack.

Write amplification can arise at various levels and for various reasons within a storage stack:

• at the file system level: file system metadata overhead, write granularity and alignment
restrictions;

• at the FTL level: garbage collection and logical-to-physical mapping update overhead;
• at the physical memory level: write granularity and alignment restrictions.

Read amplification is also caused by different factors:

• at the file system level: file system lookup overhead, read granularity and alignment restrictions;
• at the FTL level: logical-to-physical address translation;
• at the physical memory level: read granularity and alignment restrictions.

4.1.6 Read and Write Cache
There are many different kinds of caching (or buffering) mechanisms, all serving various purposes.
Caches can be roughly characterized by:

• their size: the amount of dedicated RAM;
• their location: at the driver level, the block device abstraction level, the file system core level, etc.;
• their access type: read-only, write-through, write-back;
• their content: objects, raw blocks, metadata, data, etc.;
• their eviction policy: FIFO, LRU, LFU, etc.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 22

These parameters can all greatly affect performance measures. Therefore, a thorough performance
assessment cannot be done without including a detailed description of the involved caching/buffering
mechanisms.

Because of its log structure, TSFS does not need a complex write cache. Instead, it uses a simple write
buffer which size is automatically adjusted based on the underlying storage device technology and the
available RAM (the application designer can also manually adjust the size using advanced configurations,
as discussed in Chapter 6). The impact of TSFS write buffering on performances is discussed in
Section 4.2.6.

TSFS also features an object-level metadata read cache to improve overall performances, especially on
storage technologies with page-based read operations. The impact of the read cache on write and read
performances are discussed in Section 4.2.5 and Section 4.4.3 respectively.

4.2 Average Net Write Throughput
Average net write performances can drastically vary across storage devices, platforms and
configurations. It is mostly determined by:

• the raw write throughput;
• the update size and alignment;
• the transaction size;
• the amount of available disk space;
• read caching;
• write buffering;
• other system-level factors like CPU power.

4.2.1 Raw Throughput
The most obvious factor influencing the net write throughput is the write speed of the underlying
storage device, which we refer to as the raw write throughput. The raw write throughput represents an
absolute upper bound on the net write throughput. No matter how efficient the file system is, and no
matter how much care has been put into the application design, the raw write throughput can never be
exceeded — that is, of course, disregarding the possible effect of read/write caches.

Since we are primarily interested in sustained performances, unless stated otherwise, the raw write
throughput for flash devices takes into account the block erase time. Table 5 shows typical combined
erase/write throughputs for bare flash devices, namely NOR, NAND SLC and NAND MLC. These
performances come from a combination of the limited bus speed and flash program/erase latency.

NOR NAND (SLC) NAND (MLC)

200KB/s 10MB/s 5MB/s

Table 5 – Typical sustained erase/write throughputs for bare flash devices.

Managed flash devices, on the other hand, are more complex and unpredictable. This is due to the
embedded FTL, which design is largely kept secret by manufacturers. Figure 14 shows throughputs
measured on a class 10 SD card. We can see that the write throughput varies widely with the size of
the write operations.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 23

1 2 4 8 16 32 64 128 256 512
Write Size (KB)

0

1

2

3

4

5

W
rit

e
Th

ro
ug

hp
ut

 (M
B/

s)

Figure 14 – Write speeds sampled from a class 10 SD card for various write sizes.

Being log-structured, TSFS performs mostly large sequential write accesses. Consequently, it shows
little sensitivity to the poor raw random performances of managed flash devices. The most notable
exception to this rule occurs when long streaks of short transactions are performed. This particular
topic is covered in Section 4.2.3.

4.2.2 Update Size and Alignment
Larger updates usually yield higher average write throughputs. One of the reason for this, is the way
that files are subdivided into elementary data blocks called extents — other file systems call them sectors
or simply blocks. An extent can only be updated as a whole, partial updates being only possible through
a read-modify-write procedure. Partial updates can occur either as the result of a small or an unaligned
write access. This is illustrated by Figure 15(a) and Figure 15(b) respectively.

Extents

Write

Update

(a) Small update

Extents

Write

Update

(b) Unaligned update

Figure 15 – Partial updates are the result of small and/or unaligned write accesses.

The read-modify-write procedure affects write performances in two different ways:

1. more data is written than updated, which implies some additional write amplification;
2. the updated extent must first be read, which further adds to the update time.

For optimal write performances, application designers should aim for large updates (at least as large as
an extent). TSFS default extent size is 512 bytes, but can be adjusted on a per-file basis using
tsfs_file_extent_min_sz_set(). Updates should also be aligned on extent boundaries as much
as possible, although the importance of proper alignment diminishes as the update size grows.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 24

Larger updates are associated with improved write performances for another reason. As updates are
performed, internal file system metadata must be updated as well. Because TSFS maintains a
near-constant metadata update overhead as the update size increases, larger updates lead to a lower
write amplification (shown in Figure 16) and therefore, a higher write throughput.

128 256 512 1024 2048 4096 8192
Update size (Bytes)

1.0

1.5

2.0

2.5

3.0

3.5

W
rit

e
Am

pl
ifi

ca
tio

n

Figure 16 – Write amplification caused by metadata update for various update sizes.

4.2.3 Transaction Size
As previously mentioned in Section 2.3.3, a write transaction is a sequence of write operations that
either succeeds or fails as a whole. The number of write operations included in a single transaction can
vary from 1 to infinity, such that the amount of data written can also vary quite a lot.

The amount of data written per transaction can have a significant impact on write performances. Each
time a transaction ends, the internal write buffer must be written to the storage device, even though it
may not be full. on a device characterized by a coarse write granularity (such as NAND and
NAND-based devices), a workload dominated by small transactions can cause significant write
amplification and severely hamper net write performances.

On managed flash devices, write performances can suffer even for transactions larger than a page, due
to the very low raw random write throughput (see Section 4.2.1). On these devices, the application
designer should strive for large transactions to obtain the best possible performances.

On the contrary, NOR flash devices are not very sensitive to the transaction size, due to fine-grained
program operations. When compared to NAND or NAND-based devices, the average net write
throughput can even be higher on NOR for very small transactions, despite the raw write throughput
being more than an order of magnitude lower.

4.2.4 Available Disk Space
In log-structured file systems (or FTLs), updates are performed out-of-place (using COW update
schemes), leaving invalid pieces of data — old versions of updated data — behind. Eventually, the space
occupied by these invalid chunks of data must be reclaimed by the file system. This process is called
garbage collection and is illustrated in Figure 17.

On flash memories, pieces of data that are still valid must be moved somewhere else as space is
reclaimed. This is needed so that erase blocks can be freed, erased and reused. This data relocation

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 25

Write
Pointer

Garbage
Collection

Pointer

Free space

Oldest
Data

Newest
Data

Figure 17 – Garbage collection in a log-structured file system.

process generates additional write amplification. The less available disk space there is, the more often
garbage collection must be performed and the higher the write amplification becomes.

To get a sense of how available disk space is tied to write amplification — and ultimately, net write
throughput —, we conduct a simple performance analysis assuming uniformly distributed random write
accesses on a purely log-structured file system.

To further ease the discussion, we purposely neglect any metadata overhead and consider only
equal-sized, aligned updates. The update size, u, is a multiple of the underlying page size — such that
there are no partial page updates.

The probability P (U) that a chunk of size u is updated is

P (U) =
u

r ×m
(4.1)

where r is the media fill ratio (i.e. the ratio of the data set size to the media size) and m is the media size.
The probability P (V) that the chunk is still valid after n updates is

P (V) =

(
1− P (U)

)n

=

(
1− u

r ×m

)n

. (4.2)

The number of updates that can be performed in one revolution (that is, before the append position of
the log returns to its current position) depends on the media size m and on the amount of collected
data. In the case of uniformly distributed updates, the amount of data collected over one revolution, f is

c = mP (V) . (4.3)

The number of updates during one revolution is

n =
m− c

u
=

m(1− P (V))

u
(4.4)

and thus, the probability for an extent to be valid upon collection must satisfy

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 26

P (V) =

(
1− u

r ×m

)m(1−P (V))
u

. (4.5)

Besides, the write amplification introduced by garbage collection is

gf =
1

1− P (V)
. (4.6)

Combining Equation 4.5 and Equation 4.6 and solving for various fill ratios yields the curves shown in
Figure 18(a). The four curves correspond to four different update to media size ratio (u/m): 1:16, 1:16K,
1:16M, 1:16G. Figure 18(b) shows the corresponding impact on average write throughput for typical
storage devices.

20 40 60 80
Fill Level (%)

1

2

3

4

5

6

7

8

Am
pl

ifi
ca

tio
n

1:16
1:16K
1:16M
1:16G

(a) Write amplification versus media fill ratio.

20 40 60 80
Fill Level (%)

10 3

10 2

10 1

100

101

Ne
t W

rit
e

Sp
ee

d
(M

B/
s)

NOR
NAND SLC
NAND MLC
SD card

(b) Net write throughput versus media fill ratio.

Figure 18 – Impact of the fill ratio on garbage collection-induced write amplification and
average net write throughput for 4KiB uniformly distributed random accesses.

From the preceding analysis, we can make a number of important observations:

• For usual update to media size ratio, the write amplification depends solely on the fill ratio. For
the remaining discussion, we can safely ignore both the update and media size.

• Write throughput can be severely hampered by garbage collection when there is too little free
space left. The exact amount of free space needed to maintain a given level of performance
depends on the application access patterns.

• Write performances of managed flash devices are also affected by garbage collection. However
managed flash devices reserve hidden disk space for garbage collection, effectively reducing the
maximum write amplification that can be measured from an external standpoint.

• Under the uniform distribution assumption, the cyclic garbage collection algorithm minimizes the
amount of valid data to be relocated. Therefore, the curves shown in Figure 18(a) are absolute
lower bounds on the write amplification for uniformly distributed write accesses. This holds true
for any flash file system or FTL.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 27

4.2.5 Read Caching
Writing to a file first involves looking for data blocks to be updated. As such, any improvement to read
performances can also lead to improved write performances. Various factors contributing to the average
net read throughput are covered in Section 4.4. For now, we specifically focus on read caching, as it has
the most tangible impact on write performances. It is also the one factor that application designers have
the most control over.

Figure 19 illustrates how the read cache size can affect the average net write throughput on typical
storage devices. Performance gains are particularly obvious for small write accesses on devices
exhibiting a fair amount of read amplification such as NAND-based devices (either raw or managed).
Unsurprisingly, the read cache is of little help on NOR flash, where byte-level read accesses are allowed.

MRAM NOR NAND SLC NAND MLC SD card

100

101

Ne
t W

rit
e

Sp
ee

d
(M

B/
s)

2MiB read cache
64KiB read cache
No read cache

(a) 4KiB updates

MRAM NOR NAND SLC NAND MLC SD card

100

101

Ne
t W

rit
e

Sp
ee

d
(M

B/
s)

2MiB read cache
64KiB read cache
No read cache

(b) 64KiB updates

Figure 19 – Average net random write throughput for various storage devices and read cache
configurations for a 256MiB data set.

4.2.6 Write Buffering
TSFS’s internal write buffer must be at least as big as the elementary write block (i.e. a NAND flash
page or SD card sector). On raw flash devices, increasing the write buffer beyond the page size is of
little help. This is due to write size having only a marginal effect on the raw write throughput.

As mentioned in Section 4.2.1, the situation is different on managed flash devices, where the write size
has a huge impact on the raw write throughput. On these devices, a large write buffer can widely
improve average net write performances.

TSFS automatically adjusts the size of the write buffer to obtain the best possible performances, given
the underlying storage device and available RAM. The application designer can also manually adjust the
size of the write buffer through advanced configurations. This is covered in Chapter 6.

4.2.7 Other Factors
Many system-level factors — like CPU power, external RAM latency, controller design, interrupt-latency,
kernel design — can have an impact on write performances. For medium and large read/write payloads,
performances tend to be primarily I/O bound.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 28

On NOR flash devices, the combined write/erase throughput is usually not high enough to expose the
influence of system-level bottlenecks.

On NAND flash and NAND-based flash devices, performances are dictated by different factors
depending on the payload size. For small payloads, performances are mostly limited by the write
amplification resulting from coarse write granularity. For large payloads, performances are mostly
limited by the raw throughput of the device. In either case, the effect of system-level bottlenecks is not
significant.

On RAM-like technologies, the situation is different. The combination of fine-grained write operations
and high raw throughputs can make system-level limitations more significant. Figure 20 shows the
impact of limited CPU power on a RAM-like storage device with a 20MB/s symmetric read/write
throughput. CPU-limited curves are computed assuming 16 and 128 KOPS (kilo read/write operations
per second) limits, which are fairly typical figures for a modest low-power processor and a more capable
application processor respectively.

1 2 4 8 16 32 64 128 256 512
Update Size (KB)

2

4

6

8

10

12

Ne
t W

rit
e

Sp
ee

d
(M

B/
s)

16 KOPS
128 KOPS
Unlimited

Figure 20 – On RAM-like devices, performances can be limited by system-level bottlenecks.

4.3 Worst Case Write Latency
Write latency is another important aspect of file system performances. It is the amount of time needed
to complete a write operation. The write latency may vary across storage devices, file systems and file
system configurations. Most importantly, it may vary from one write operation to another. This is why
we are interested in the worst case latency, that is, the maximum amount of time needed for a write
operation to complete.

On flash-based storage devices, the worst case write latency is essentially determined by:

• the block erase time;
• the latency-throughput trade-off.

4.3.1 Block Erase Time
Before a flash block can be written to, it must be erased. Table 6 shows plausible performances for a
64KiB block erase and a 4KiB page program operation on NOR, NAND SLC and NAND MLC.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 29

Considering these numbers, we can see that the longest write operation can last much longer than the
shortest one: 67 times longer for NOR, 25 times for NAND SLC and 10 times for NAND MLC.

NOR NAND (SLC) NAND (MLC)

4KiB page program 15ms 200us 500us

64KiB block erase 1s 5ms 5ms

Table 6 – Typical write and erase times for NOR, NAND SLC and NAND MLC.

Because it is inherent to the physics of flash cells, not much can be done to reduce the impact of the
block erase time on the worst case write latency. Still, application designers should be aware of this
particular aspect when settling on high-level performance requirements.

4.3.2 Latency vs Throughput Trade-off
As mentioned in Section 4.2.4, the average write amplification introduced by garbage collection is a
function of the fill ratio. However, the instantaneous amplification can be much higher than the average,
which is significant in terms of worst case write latency.

TSFS limits the maximum amount of garbage collection-induced write amplification by spreading the
garbage collection across multiple write requests. In its default configuration, TSFS guarantees a
maximum write amplification of 10, which is comparable to the worst case latency associated with flash
block erase times (see Section 4.3.1). However, it is possible to adjust the maximum allowable
amplification through advanced configurations. This is covered in Chapter 6.

There is a fundamental trade-off between the worst case latency and the average throughput. This
relation can be observed in many systems and TSFS makes no exception. Figure 21 shows the relation
between the net write throughput and the fill ratio for different maximum write amplifications.

20 40 60 80
Fill Level (%)

0

1

2

3

4

Ne
t W

rit
e

Sp
ee

d
(M

B/
s)

Max amp: x8
Max amp: x9
Max amp: x10
Max amp: inf

Figure 21 – The evolution of the average net write throughput as the fill ratio varies, is
affected by the maximum allowed write amplification. Throughput values are
computed for a hypothetical 256MiB NAND SLC device with a write throughput
of 10MB/s, a read throughput of 30MB/s and a 64KiB read cache.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 30

4.4 Average Net Read Throughput
The average net read throughput can vary a lot across different storage devices, platforms and
configurations. It is mostly determined by:

• the raw read throughput;
• the read size and alignment;
• read caching;
• other system-level factors.

4.4.1 Raw Read Throughput
Table 7 shows typical sustained read throughputs for bare flash devices, namely NOR, NAND SLC and
NAND MLC. These performances come from a combination of the limited bus speed and the internal
page load latency.

NOR NAND (SLC) NAND (MLC)

30MB/s 30MB/s 20MB/s

Table 7 – Typical sustained read throughputs for bare flash devices.

As with write performances, managed flash devices exhibit raw throughputs that are highly dependent
on the access size. Again, this is due to the embedded FTL and, more precisely, to the logical-to-physical
address resolution process. Figure 22 shows throughputs measured on a class 10 SD card.

1 2 4 8 16 32 64 128 256 512
Read Size (KB)

2

4

6

8

10

Re
ad

 T
hr

ou
gh

pu
t (

M
B/

s)

Figure 22 – Read speeds sampled from a class 10 SD card for various read sizes.

4.4.2 Read Size and Alignment
Before data requested by the application can be read, it must first be located. The lookup process
typically generates small scattered read operations, such that the amount of read amplification also
depends on the read granularity of the underlying storage device.

On NOR flash and RAM-like devices, fined-grained read accesses provide the smallest possible lookup
overhead. On the contrary, the coarse read granularity of NAND and NAND-based flash devices cause

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 31

a much higher read amplification. The worst case is typically observed on managed flash devices which
tend to have very low raw random read throughputs (see Figure 22). In this case, the read cache can be
used to mitigate the lookup overhead (see Section 4.4.3).

Reading data from a NAND memory triggers one or more internal page load operations. The typical
NAND page size is 4KiB for SLC and 8KiB for MLC. Reading less than a page therefore results in read
amplification and lower net read throughput. For this reason, SD card transfers should be at least as
large as a typical NAND page and aligned on page boundaries, even though smaller transfers are
allowed.

4.4.3 Read Caching
Read caching improves random read performances by limiting the amount of read operations actually
reaching the storage device during extent lookups. Figure 23 shows the impact of the read cache size
on typical storage devices.

MRAM NOR NAND SLC NAND MLC SD card

100

101

Ne
t R

ea
d

Sp
ee

d
(M

B/
s)

2MiB read cache
64KiB read cache
No read cache

(a) 4kB updates

MRAM NOR NAND SLC NAND MLC SD card

101

Ne
t R

ea
d

Sp
ee

d
(M

B/
s)

2MiB read cache
64KiB read cache
No read cache

(b) 64kB updates

Figure 23 – Average net random read throughput for various storage devices and read cache
configurations for a 256MB data set.

On storage devices with fast and fine-grained read operations, like NOR flash and RAM-like memories,
the read cache is not needed. However, on NAND and NAND-based devices, the read cache is often
essential to achieve the required read performances.

4.4.4 Other Factors
System-level bottlenecks like limited CPU power can greatly affect read performances, even more so
than write performances since the average read throughput is usually higher than the average write
throughput.

On NOR flash and RAM-like technologies, the combination of byte-level read accesses and high raw
throughputs can lead to CPU bound performances. Figure 24 shows the impact of limited CPU power
on a RAM-like storage device with a 20MB/s symmetric read/write throughput. CPU-limited curves are
computed assuming 16 and 128 KOPS limits.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Performances and Space Management 32

128 256 512 1024 2048 4096 8192 16384 32768
Update Size (Bytes)

0

5

10

15

20

25

30

Ne
t R

ea
d

Sp
ee

d
(M

B/
s)

16 KPOS
128 KOPS
Unlimited

Figure 24 – CPU bound performances on a RAM-like storage device with a 20/MB/s sym-
metric read/write throughput.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

Chapter

5
Usage

5.1 Initializing and Terminating a File Sytem Instance
TSFS initialization and termination is a straightforward process. A typical example of a complete TSFS
instance life cycle is given in Listing 1.

tsfs_create() allocates a small part of the memory needed by the new instance using the default
memory allocator. The memory allocation is completed by tsfs_mount(), this time, using the memory
segment provided by the application — i.e. the p_seg member of the tsfs_cfg_t configuration
structure.

Once tsfs_unmount() has been called, the provided memory segment can safely be used for other
purposes, until tsfs_mount() is called again. Besides, the memory allocated by tsfs_create()
using the default allocator can be freed using tsfs_destroy(), provided that the default allocator
supports memory freeing.

Both tsfs_create() and tsfs_mount() can fail because of a lack of available memory. In this case,
both functions return RTNC_NO_RESOURCE. Without extended configurations — i.e. with the p_ext_cfg
member of the tsfs_cfg_t structure set to NULL —, internal TSFS parameters are automatically
adjusted to fit the given amount of memory. The minimum amount of memory that TSFS must be given
depends on the underlying storage technology.

tsfs_cfg_t fs_cfg;
bp_media_hndl_t media_hndl;
uint8_t t_seg[8 * 1024];
int rtn = RTNC_SUCCESS;

// Instantiate a media instance here to obtain a valid media handle.
// See the BASEplatform Reference Manual for details.
// rtn = bp_ramdisk_create(...

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Usage 34

// Create the TSFS instance.
fs_cfg.media_hndl = media_hndl; // Media instance to be tied to the TSFS instance.
fs_cfg.p_seg = (void *)t_seg; // Segment of memory dedicated to the file system.
fs_cfg.seg_sz = sizeof(t_seg); // Size of the given memory segment.
fs_cfg.max_entry_cnt = 10u; // Maximum number of opened files/directories.
fs_cfg.p_tdata = NULL; // Always set to NULL.
fs_cfg.p_ext_cfg = NULL; // Set to NULL for default.
rtn = tsfs_create("fs0", &fs_cfg);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Format the TSFS instance (set last argument to NULL for default).
rtn = tsfs_format("fs0", NULL);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Mount the TSFS instance.
rtn = tsfs_mount("fs0");
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// ...
// Here the file system is available for directory, file and snapshot accesses.
// ...

// Unmount the TSFS instance.
rtn = tsfs_unmount("fs0");
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Destroy the TSFS instance.
rtn = tsfs_destroy("fs0");
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 1 – TSFS initialization example.

5.2 Creating a File or Directory
Listing 2 illustrates how files and directories can be created.

A new file can be created using tsfs_file_create(). If a file or directory already exists at the same
location, RTNC_ALREADY_EXIST is returned and the original file or directory is left untouched. The
existing file or directory can also be removed using tsfs_file_delete() or tsfs_dir_delete()
if needed.

If the parent directory does not exist, the function returns RTNC_NOT_FOUND. It is up to the application
to create the missing parent directory.

A new directory can be created using tsfs_dir_create(). The behaviour for the directory creation
interface is identical to that of the file counterpart.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Usage 35

int rtn;

//
// TSFS instance setup goes here.
//

// An attempt to create a new file in a directory that
// does not exist fails with RTNC_NOT_FOUND.
rtn = tsfs_file_create("fs0/d0/f0.txt");
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Create the missing directory.
rtn = tsfs_dir_create("fs0/d0");
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Create a new file inside the previously created directory.
rtn = tsfs_file_create("fs0/d0/f0.txt");
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// An attempt to create the same file again fails with RTNC_ALREADY_EXIST.
rtn = tsfs_file_create("fs0/d0/f0.txt");
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 2 – File and directory creation example

5.3 Opening and Closing a File or Directory
Once a file or directory has been created, it can be opened using tsfs_file_open() or
tsfs_dir_open(), with the same path parameter as the one used for the creation.

The file/directory opening functions return an opened file/directory handle, which can be used to
perform further read and write operations. Each opened file/directory has an associated internal
position that is automatically incremented after each read or write operation. The internal current
position is set to 0 upon opening a file or directory. The internal file position can be adjusted by the
application using tsfs_file_seek(). Directories can only be read from the first entry to the last one.

An opened file or directory handle is valid as long as it is not closed using tsfs_file_close() or
tsfs_dir_close(). Using a closed handle yields undefined behaviour. The maximum number of files
and directories that can be simultaneously opened is determined by the max_entry_cnt member of
the tsfs_cfg_t configuration structure.

5.4 Writing to a File
Once opened, a file can be written to using tsfs_file_write(). The actual number of bytes written
to the file is returned through the last parameter. If enough media space is available to complete the
requested write operation, the returned write size is equal to the requested size. If the media becomes
full before the write operation completes, RTNC_FULL is returned and the returned write size indicates
the number of bytes written before the media full condition occurred.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Usage 36

A file can also be written to using tsfs_file_append(). Unlike tsfs_file_write(),
tsfs_file_append() always writes at the end of the selected file (hence append), independent of
the current file position.

int rtn;
tsfs_file_hndl_t fhndl;

//
// TSFS instance setup goes here.
//

// Create a new file.
rtn = tsfs_file_create("fs0/f0.txt");
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Open the newly created file.
rtn = tsfs_file_open("fs0/f0.txt", &fhndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Write something at the begining of the file.
rtn = tsfs_file_write(fhndl, "hello world!", sizeof("hello world!")+1, &sz);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Set the current position to the beginning of the file.
rtn = tsfs_file_seek(fhndl, 0u, TSFS_FILE_SEEK_SET)
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Write a new message.
rtn = tsfs_file_write(fhndl, "hello you!", sizeof("hello you!")+1, &sz);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Set the current position to the beginning of the file.
rtn = tsfs_file_seek(fhndl, 0u, TSFS_FILE_SEEK_SET)
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Write a second message after the first one.
rtn = tsfs_file_append(fhndl, "hello there!", sizeof("hello there!")+1, &sz);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

rtn = tsfs_file_close(fhndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 3 – File writing example

5.5 Reading From a File
A file can be read from using tsfs_file_read() as illustrated in Listing 4. Notice how the end of the
file is detected using the last function parameter, which returns the actual amount of bytes read from
the file. As long as data is left in the file, the actual read size remains equal to the requested read size. If,
and only if, the end of the file is reached, the returned read size is smaller than the requested size. If an
error occurs the returned read size value is undefined and should be ignored.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Usage 37

uint8_t t_buf[100];
tsfs_file_hndl_t fhndl;
int rtn;

//
// TSFS instance setup and "fs0/f0.txt" file creation/writing goes here.
//

// Open the file to be read (must have been previously created).
rtn = tsfs_file_open("fs0/f0.txt", &fhndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Read from opened file, 100 bytes at a time, until the end is reached.
do {

rtn = tsfs_file_read(fhndl, &t_buf[0], sizeof(t_buf), &sz);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Do something with the read data here.

} while (sz < sizeof(t_buf));

// Close the file.
rtn = tsfs_file_close(fhndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 4 – Example file read

5.6 Reading a Directory
The names of all the files and directories contained in a directory can be retrieved using
tsfs_dir_read(). This is illustrated in Listing 5.

The application is responsible for providing a buffer long enough to accommodate the longest file or
directory name. In Listing 5, the buffer used can contain up to TSFS_MAX_PATH_LEN + 1 characters,
which is guaranteed to be enough for any possible file or directory name.

char t_buf[TSFS_MAX_PATH_LEN + 1];
tsfs_dir_hndl_t dhndl;
int rtn;

//
// TSFS instance setup and "fs0/d0" directory creation goes here.
//

// Open the file to be read (must have been previously created).
rtn = tsfs_dir_open("fs0/d0", &dhndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Read the opened directory, one child file/directory at a time.
do {

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Usage 38

rtn = tsfs_dir_read(dhndl, &t_buf[0], sizeof(t_buf));
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Print the child name.
printf("%s\n", t_buf);

} while (t_buf[0] != '\0');

// Close the file.
rtn = tsfs_dir_close(dhndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 5 – Example directory read

5.7 Deleting a File or Directory
A file can be deleted using tsfs_file_delete(). It is safe to delete an opened file. Further access to
this file will simply return an error, indicating that the file was not found. This is illustrated in Listing 6.

A directory can be deleted using tsfs_dir_delete(). An opened directory can also be safely
deleted. However, it is not possible to delete a non-empty directory. If such an attempt is made,
RTNC_INVALID_OP is returned and the directory is left untouched.

uint8_t byte;
tsfs_file_hndl_t fhndl;
tsfs_file_size_t sz;
int rtn;

//
// TSFS instance setup and "fs0/f0.txt" file creation goes here.
//

// Open the file to be read (must have been previously created).
rtn = tsfs_file_open("fs0/f0.txt", &fhndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Delete "fs0/f0.txt" while it is opened.
rtn = tsfs_file_delete("fs0/f0.txt");
if (rtn != RTNC_SUCCESS) { /* Error management */ }

rtn = tsfs_file_read(fhndl, &byte, 1u, &sz);
if (rtn == RTNC_NOT_FOUND) {

rtn = tsfs_file_close(fhndl);
if (rtn != RTNC_SUCCESS);

} else {
/* Error management */

}

Listing 6 – Example of opened file deletion.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Usage 39

5.8 Truncating a File
A file can be extended or shrunk using tsfs_file_truncate(). If the requested file size is lower
than the current size the extraneous data is discarded. If the requested file size is higher than the
current size, zeros are appended at the end of the file to fill the gap.

An opened file can safely be extended or shrunk. If the current position of the opened file is beyond the
size of the truncated file, the next call will report an actual read size of 0 byte. This is illustrated in
Listing 7.

uint8_t t_buf[100];
tsfs_file_hndl_t fhndl;
tsfs_file_size_t sz;
int rtn;

//
// TSFS instance setup and "fs0/f0.txt" file creation goes here.
//

// Open a file.
rtn = tsfs_file_open("fs0/f0.txt", &fhndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Write a hundred bytes.
rtn = tsfs_file_write(fnhdl, t_buf, sizeof(t_buf), &sz);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Set the file position 10 bytes behind.
rtn = tsfs_file_seek(fhndl, -10, TSFS_FILE_SEEK_CUR);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Reduce the file size to 50 bytes.
rtn = tsfs_file_truncate("fs0/f0.txt", sizeof(t_buf)/2);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// An attempt to read beyond the first half the original file
// will report 0 byte read as the second half of the original
// file has been previously discarded.
rtn = tsfs_file_read(fhndl, &t_buf[0], 1u, &sz);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 7 – Example of opened file truncation

5.9 Starting and Ending a Write Transaction
This section is specifically about TSFS write transactions. For a broader discussion on write transactions,
please refer to Section 2.3.3.

Any combination of the following operations are guaranteed to be atomically executed if they are part
of the same write transaction:

• tsfs_file_create()

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Usage 40

• tsfs_file_delete()
• tsfs_file_write()
• tsfs_file_append()
• tsfs_file_truncate()
• tsfs_dir_create()
• tsfs_sshot_create()
• tsfs_sshot_delete()

A write transaction is ended by the application using tsfs_commit(). The end of a write transaction
coincides with the beginning of the next one. Therefore, no explicit function call is needed to start a
new write transaction. The very first write transaction is automatically started after tsfs_mount()
successfully completes.

Only one write transaction can exist at a time. The current state of the file system, up to the most
recent operation of the current write transaction, is called the working state. The working state is the
one accessed by default, using a path of the form

<file system name>/<file or directory path>.

The state of the file system as of the latest commit can also be accessed. The latest committed state is
specified using the .c and .latest built-in path components:

<file system name>/.c/.latest/<file or directory path>.

Alternatively, the working state (i.e. the latest uncommitted state) can be accessed using the .uc
built-in path component:

<file system name>/.uc/.latest/<file or directory path>.

5.10 Recovering from Unexpected Interruptions
Listing 8 shows how write transactions can be used to keep two files in sync at all time, independent of
possible interruptions. This example contains three write transactions. The first one begins right after
the call to tsfs_mount(). The first transaction ends where the second one begins, that is, at the first
tsfs_commit(). Finally, the second transaction ends where the third transaction begins, that is, at the
second tsfs_commit().

If the first commit fails (or any function call before), the file system returns to its original (empty) state
after the next mount cycle (as if the two files were never created). Otherwise, both files are guaranteed
to exist after the next mount cycle. Under no circumstances, may only one of the two files exist.

If the second commit fails (or any function call before), both files remain empty. Otherwise, both files
contain ”hello world!”. Under no circumstances, may only one of the two files be empty.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Usage 41

tsfs_file_hndl_t fhndl;
tsfs_file_sz_t wr_sz;
int rtn;

// Mount the file system (assuming that the 'fs0' file system instance
// has been previously created). A new transaction is implicitly started.
rtn = tsfs_mount("fs0");
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Create a new file.
rtn = tsfs_file_create("fs0/f0.txt");
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

rtn = tsfs_file_create("fs0/f1.txt");
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// End the current write transaction and start the next one.
rtn = tsfs_commit("fs0");
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Write something to the first file.
rtn = tsfs_file_open("fs0/f0.txt", &fhndl);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

rtn = tsfs_file_write(fhndl, "", sizeof("hello world!"), &wr_sz);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

rtn = tsfs_file_close(fhndl);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Write something to the second file.
rtn = tsfs_file_open("fs0/f1", &fhndl);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

rtn = tsfs_file_write(fhndl, "white", sizeof("hello world!"), &wr_sz);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

rtn = tsfs_file_close(fhndl);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Ends the current write transaction and start the next one.
rtn = tsfs_commit("fs0");
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

Listing 8 – Beginning and ending a transaction.

5.11 Creating and Deleting Snapshots
A snapshot can be created using tsfs_sshot_create(). Once a snapshot of the working state has
been created, the saved state is guaranteed to remain available for further read-only operations, as long

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Usage 42

as it is not explicitly deleted using tsfs_sshot_delete().

A snapshot cannot be modified, it can only be deleted. Any attempt to perform a write operation on a
snapshot will return RTNC_INVALID_OP.

The number of snapshots that can simultaneously exist is only limited by the size of the underlying
media.

Snapshots can be accessed through the path argument of read-only functions. Committed and
uncommitted snapshots can be accessed separately. Committed snapshots can be accessed through a
path of the form

<file system name>/.c/.ss/<snapshot name>/<file or directory path>.

Likewise, uncommitted snapshots can be accessed through a path of the form

<file system name>/.uc/.ss/<snapshot name>/<file or directory path>.

Listing 9 shows how snapshots and write transactions can be used to read from a file while it is being
updated.

tsfs_file_hndl_t fhndl;
tsfs_file_sz_t sz;
char t_buf[50];
int rtn;

// Mount the file system (assuming that the 'fs0' file system instance
// has been previously created). A new transaction is implicitly started.
rtn = tsfs_mount("fs0");
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Create a new file.
rtn = tsfs_file_create("fs0/f0.txt");
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Write something to the file.
rtn = tsfs_file_open("fs0/f0.txt", &fhndl);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

rtn = tsfs_file_write(fhndl, "hello world!", sizeof("hello world!")+1u, &sz);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Keep a snapshot of the current state
// (or, equivalently, start a new read transaction).
rtn = tsfs_sshot_create("fs0", "ss0");
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Overwrite the original message and close the file.
rtn = tsfs_file_seek(fhndl, 0u, TSFS_FILE_SEEK_SET);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Usage 43

rtn = tsfs_file_write(fhndl, "hello you!", sizeof("hello you!")+1u, &sz);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

rtn = tsfs_file_close(fhndl);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Read the text from the previously created snapshot.
rtn = tsfs_file_open("fs0/.uc/.ss/ss0/f0.txt", &fhndl);
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

rtn = tsfs_file_read(fhndl, t_buf, sizeof(t_buf), &sz)
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Make sure the content is "hello world!".
if (strcmp(t_buf, "hello world!") != 0) {

printf("Something is wrong!");
while(1);

}

Listing 9 – Managing concurrent read/write operations using snpashots.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

Chapter

6
Advanced Configuration

TSFS is controlled by several internal parameters. These parameters are not exposed through TSFS’s API
for the following reasons:

• Adjusting internal parameters is somewhat complex. A proper tuning requires some understanding
of low-level elements of the TSFS design and, more specifically, how they relate to various
performance aspects.

• More often than not, the net improvement obtained by tweaking internal parameters is marginal.
Internal parameters can thus (and probably should) be ignored for all but the very end of the
design flow.

• Because they are not officially part of the public interface, TSFS internal parameters are more
prone to change in future versions.

That being said, tuning internal parameters can sometimes be a needed step towards reaching TSFS full
potential.

6.1 Extended Configuration
Some internal parameters can be set upon creating a TSFS instance. These parameters are not stored on
the media and can be changed without reformatting.

Listing 10 illustrates how the tsfs_bknd_log_ext_cfg_t configuration structure can be used to
adjust internal TSFS parameters. Individual structure members are described hereafter.

#include <souce/tsfs_bknd_log_i.h> // <-- Needed to access advanced config.

media_hndl_t media_hndl;
tsfs_bknd_ext_cfg_t ext_cfg;
tsfs_cfg_t cfg;
uint8_t g_tsfs_mem[8192];
int rtn;

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 6 Advanced Configuration 45

// Create a media and initialize 'media_hndl' here...

ext_cfg.obj_cache_entry_cnt_log2 = 15; // 32Ki cache entries.
ext_cfg.obj_cache_assoc_log2 = 4u; // Associativity of 16.
ext_cfg.rd_cache_blk_cnt_log2 = 1u; // 2 prefetch cache blocks.
ext_cfg.rd_cache_blk_sz_log2 = 9u; // 512B prefetch cache blocks.
ext_cfg.wr_buf_sz_log2 = 16u; // 64KiB write buffer.
ext_cfg.max_gc_wr_amp = 10u; // Max GC-induced write amp of 10.

cfg.media_hndl = media_hndl; // Media handle.
cfg.p_seg = g_tsfs_mem; // Memory segment dedicated to TSFS.
cfg.seg_sz = sizeof(g_tsfs_mem); // Size of the memory segment.
cfg.max_entry_cnt = 10u; // Maximum number of opened files/dirs.
cfg.p_tdata = NULL; // Trace data pointer (set to NULL).
cfg.p_ext_cfg = (void *)&ext_cfg; // Use extended config (NULL for default).

rtn = tsfs_create("fs0", &cfg);
if (rtn != RTNC_SUCCESS) { /* Error handling. */}

Listing 10 – TSFS extended configuration example.

6.1.1 obj_cache_entry_cnt_log2
obj_cache_entry_cnt_log2 determines the maximum number of metadata objects in the cache.
The default value depends on the amount of available RAM and the underlying storage technology.
Higher values tend to increase read/write throughput at the expense of a higher RAM usage. Values
between 0 and 32 are accepted. A value of (uint8_t)-1 disables the object cache.

6.1.2 obj_cache_assoc_log2
obj_cache_assoc_log2 changes the associativity for the metadata object cache. The default value
is 3, which corresponds to an associativity of 8. Higher values tend to increase the read/write
throughput at the expense of a higher RAM usage. Values between 0 and 5 are accepted.

6.1.3 rd_cache_blk_cnt_log2
rd_cache_blk_cnt_log2 determines the number of blocks in the prefetch cache. The default value
is 1, which means 2 blocks. Higher values tend to increase the read/write throughput at the expense of
a higher RAM usage. Values between 0 and 32 are accepted.

6.1.4 rd_cache_blk_sz_log2
rd_cache_blk_sz_log2 determines the size of the prefetch cache blocks. The default value is the
underlying media’s read block size. Changing this value usually yields poorer performances. Values
between 0 and 16 are accepted, but the prefetch cache block size must be greater or equal to the
media’s read block size.

6.1.5 wr_buf_sz_log2
wr_buf_sz_log2 determines the size of the write buffer. The default value depends on the amount of
available RAM and the underlying storage technology. Higher values may increase write throughput at

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 6 Advanced Configuration 46

the expense of a higher RAM usage. Values between 0 and 32 are accepted, but the size of the write
buffer must be greater or equal to the media’s write block size.

6.1.6 max_gc_wr_amp
max_gc_wr_amp determines the maximum amount of write amplification introduced by garbage
collection. The default value is 10. Higher values tend to increase the average write throughput at the
expense of a higher worst case write latency. Values between 2 and 128 are accepted.

6.2 Stored Parameters
Some internal parameters are stored on the media along with the rest of the file system. These are
called stored parameters. Stored parameters are determined upon formatting and loaded upon mounting.
Once the media is formatted, they cannot be modified.

Stored parameters are automatically determined by TSFS based on the underlying storage technology.
However, the application designer can customize these parameters through the
tsfs_bknd_log_sto_params_t configuration structure. Individual structure members are described
hereafter.

#include <souce/tsfs_bknd_log_i.h> // <-- Needed to access advanced config.

tsfs_bknd_log_sto_params_t sto_params;
int rtn;

sto_params.blk_sz_log2 = 16u; // 64KiB GC blocks.
sto_params.ext_sz_log2 = 12u; // 4KiB default minimum extent size.
sto_params.bf_log2 = 1u; // 2 children per node.

rtn = tsfs_format("fs0", &sto_params);
if (rtn != RTNC_SUCCESS) { /* Error handling. */}

6.2.1 blk_sz_log2
blk_sz_log2 determines the size of the blocks reclaimed by the garbage collection. The default value
is the underlying media’s erase block size. Changing this value usually has little impact on overall
performances. Values between 0 and 32 are accepted, but the block size must be greater or equal to
the media’s erase block size. The minimum number of blocks is 32.

6.2.2 ext_sz_log2
ext_sz_log2 determines the default minimum extent size, that is the minimum extent size used if not
overridden through tsfs_file_extent_min_sz_set(). The default value is 9 (512-byte extents).
The extent size should usually be set to match the average update size. A value that is too low yields
additional write amplification due to an increased metadata overhead. A value that is too high also
yields additional write amplification due to overly large updates. Values between 6 (64-byte extents)
and blk_sz_log2 - 1 are accepted.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 6 Advanced Configuration 47

6.2.3 bf_log2
bf_log2 determines the branching factor for indexing trees. The default value is 4 (16 children per
node). Lower values tend to improve the average net write throughput on media with fine-grained read
accesses such as NOR flash devices. This improvement comes at the expense of a higher RAM usage.
Values between 1 and 4 are accepted.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

Chapter

7
API Reference

tsfs_commit()Function

<tsfs.h>

Commits all the updates performed on the given file system instance since the last commit, including file
updates, snapshot creations and deletions.

In the event of an unexpected interruption (e.g. power loss) the file system is returned to the state it
was in after the last successful call to tsfs_commit().

Prototype int tsfs_commit (const char * p_fs_name);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_fs_name Name of the file system instance to be committed.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_create()Function

<tsfs.h>

Creates a new file system instance.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 49

Prototype int tsfs_create (const char * p_fs_name,
const tsfs_cfg_t * p_cfg);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_fs_name Name of the created file system instance.
p_cfg TSFS configuration structure.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_destroy()Function

<tsfs.h>

Frees all the memory tied to the given file system instance.

Prototype int tsfs_destroy (const char * p_fs_name);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_fs_name Name of the created file system instance.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_dir_close()Function

<tsfs_dir.h>

Closes the given directory. The handle becomes invalid after the directory is closed. Using a directory
handle after closing it yields undefined behavior.

Prototype int tsfs_dir_close (tsfs_dir_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 50

Parameters hndl Handle to the directory to be closed.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

tsfs_dir_create()Function

<tsfs_dir.h>

Creates a directory at the given path.

The given path must lead to a location within the working state.

If a file or directory already exists at this location, RTNC_ALREADY_EXIST is returned and the original file
or directory is left untouched.

If the parent directory does not exist, RTNC_NOT_FOUND is returned. If the path is outside the working
state, RTNC_INVALID_OP is returned.

Prototype int tsfs_dir_create (const char * p_path);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path of the directory to be created.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_ALREADY_EXIST
RTNC_IO_ERR
RTNC_FATAL

tsfs_dir_delete()Function

<tsfs_dir.h>

Deletes the directory located at the given path.

The path must lead to an existing directory of the working state. If the directory does not exist,
RTNC_NOT_FOUND is returned. If the directory is not in the working state or the given path leads to a file,
RTNC_INVALID_OP is returned. Also, if the directory is not empty, RTNC_INVALID_OP is returned.

An opened directory may safely be deleted. In this case, any further read access to this directory will
return RTNC_NOT_FOUND.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 51

Prototype int tsfs_dir_delete (const char * p_path);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path of the directory to be deleted.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_dir_exists()Function

<tsfs_dir.h>

Verifies whether the directory located at the given path exists. The function returns true (through the
p_exist parameter) if the directory exists and false otherwise (including when the given path leads
to a file).

Prototype int tsfs_dir_exists (const char * p_path,
bool * p_exist);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path to the directory which existence is to be tested.
p_exist Whether the directory located at the given path exists.

Returned
Errors

RTNC_SUCCESS
RTNC_IO_ERR
RTNC_FATAL

tsfs_dir_open()Function

<tsfs_dir.h>

Opens the directory located at the given path. If the directory does not exist, RTNC_NOT_FOUND is
returned. If the given path leads to a file, RTNC_INVALID_OP is returned.

Prototype int tsfs_dir_open (const char * p_path,
tsfs_dir_hndl_t * p_hndl);

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 52

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path to the directory to be opened.
p_hndl Handle to the opened directory instance.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_dir_read()Function

<tsfs_dir.h>

Reads the content of the given directory, one directory entry at a time. The name of the current
directory entry is copied in the given name buffer. Calling tsfs_dir_read() after the last directory
entry has been reached will return an empty string.

Prototype int tsfs_dir_read (tsfs_dir_hndl_t hndl,
char * p_name,
size_t name_sz);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle to the directory to read from.
p_name Buffer to receive the current entry name.
name_sz Size of the given name buffer in bytes.

Returned
Errors

RTNC_SUCCESS
RTNC_IO_ERR
RTNC_OVERFLOW
RTNC_FATAL

tsfs_drop()Function

<tsfs.h>

Reverts the file system’s state to that of the latest commit. All modifications performed since the latest
commit are discarded, including file updates, snapshot creations and deletions.

Prototype int tsfs_drop (const char * p_fs_name);

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 53

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_fs_name Name of the file system instance.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_append()Function

<tsfs_file.h>

Writes the supplied buffer at the end of the given file.

The number of bytes written is returned through p_append_sz. The returned value may be smaller
than append_sz if, and only if, the file system is full. In this case RTNC_FULL is returned and the value
pointed to by p_append_sz indicates the number of bytes written before the file system becomes full.

If an error occurs, other than RTNC_FULL, the value pointed to by p_append_sz is unspecified.
Otherwise, if the function completes successfully, the requested number of bytes is guaranteed to have
been written. In this case, the value pointed to by p_append_sz is always equal to append_sz.

Prototype int tsfs_file_append (tsfs_file_hndl_t hndl,
const void * p_buf,
tsfs_file_size_t append_sz,
tsfs_file_size_t * p_append_sz);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle to the file to append data.
p_buf Buffer to be written.
append_sz Size of the buffer to be written in bytes.
p_append_sz Size of the written data in bytes.

Returned
Errors

RTNC_SUCCESS
RTNC_FULL
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_close()Function

<tsfs_file.h>

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 54

Closes the given file. The handle becomes invalid after the file is closed. Using a file handle after closing
it yields undefined behaviour.

Prototype int tsfs_file_close (tsfs_file_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle to the file to be closed.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

tsfs_file_create()Function

<tsfs_file.h>

Creates a file at the given path.

The given path must lead to a location within the working state.

If a file or directory already exists at the same location, RTNC_ALREADY_EXIST is returned and the
original file or directory is left untouched.

If the parent directory does not exist, RTNC_NOT_FOUND is returned. If the path is outside the working
state, RTNC_INVALID_OP is returned.

Prototype int tsfs_file_create (const char * p_path);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path of the file to be created.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_ALREADY_EXIST
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_delete()Function

<tsfs_file.h>

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 55

Deletes the file located at the given path.

The path must lead to an existing file of the working state. If the file does not exist, RTNC_NOT_FOUND is
returned. If the file is not in the working state or the given path leads to a directory, RTNC_INVALID_OP
is returned.

A opened file may safely be deleted. In this case, any further read/write access to this file will return
RTNC_NOT_FOUND.

Prototype int tsfs_file_delete (const char * p_path);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path to the file to be deleted.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_exists()Function

<tsfs_file.h>

Verifies whether the file located at the given path exists. The function returns true (through the
p_exist parameter) if the file exists and false otherwise (including when the given path leads to a
directory).

Prototype int tsfs_file_exists (const char * p_path,
bool * p_exist);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path of the file which existence is to be tested.
p_exist Whether the file located at the given path exists.

Returned
Errors

RTNC_SUCCESS
RTNC_IO_ERR
RTNC_FATAL

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 56

tsfs_file_extent_min_sz_set()Function

<tsfs_file.h>

Sets the minimum extent size for the given file. The file must be empty, otherwise RTNC_INVALID_OP is
returned.

Prototype void tsfs_file_extent_min_sz_set (const char * p_path,
uint8_t min_sz_log2);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path File path.
min_sz_log2 Minimum extent size (base-2 logarithm).

tsfs_file_mode_reset()Function

<tsfs_file.h>

Resets an opened file access mode.

Prototype void tsfs_file_mode_reset (tsfs_file_hndl_t hndl,
int mode);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle to the file which mode is to be altered.
mode Access mode to be reset (only TSFS_FILE_MODE_RD_ONLY is currently sup-

ported).

tsfs_file_mode_set()Function

<tsfs_file.h>

Sets an opened file access mode.

Prototype void tsfs_file_mode_set (tsfs_file_hndl_t hndl,
int mode);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 57

Parameters hndl Handle to the file which mode is to be altered.
mode Access mode to be set (only TSFS_FILE_MODE_RD_ONLY is currently sup-

ported).

tsfs_file_open()Function

<tsfs_file.h>

Opens the file located at the given path. If the file does not exist RTNC_NOT_FOUND is returned. If the
given path leads to a directory, RTNC_INVALID_OP is returned.

Prototype int tsfs_file_open (const char * p_path,
tsfs_file_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path of the file to be opened.
p_hndl Opened file handle.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_read()Function

<tsfs_file.h>

Reads the requested amount of bytes from the given file.

The number of bytes read is returned through p_rd_sz. The returned value may be smaller than rd_sz
if the end of the file is reached. If an error occurs, the value pointed to by p_rd_sz is unspecified.

Prototype int tsfs_file_read (tsfs_file_hndl_t hndl,
void * p_buf,
tsfs_file_size_t rd_sz,
tsfs_file_size_t * p_rd_sz);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 58

Parameters hndl Handle to the file to read from.
p_buf Buffer to read into.
rd_sz Number of bytes to be read from the file.
p_rd_sz Actual number of bytes read from the file.

Returned
Errors

RTNC_SUCCESS
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_seek()Function

<tsfs_file.h>

Sets the current read/write position of the given file to the specified position.

Prototype int tsfs_file_seek (tsfs_file_hndl_t hndl,
tsfs_file_pos_offset_t offset,
int whence);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle to the file to seek into.
offset New position relative to the supplied reference position (the whence pa-

rameter).
whence Reference position to which offset is to be added.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

tsfs_file_size_get()Function

<tsfs_file.h>

Gets the size of the file located at the given path.

If the file does not exist, RTNC_NOT_FOUND is returned. If the given path leads to a directory,
RTNC_INVALID_OP is returned.

Prototype int tsfs_file_size_get (const char * p_path,
tsfs_file_size_t * p_sz);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 59

Parameters p_path Path of the file to get the size of.
p_sz Size of the file in bytes.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_truncate()Function

<tsfs_file.h>

Shrinks or extends the file located at the given path.

The path must lead to an existing file of the working state. If the file does not exist, RTNC_NOT_FOUND is
returned. If the file is not in the working state or the given path leads to a directory, RTNC_INVALID_OP
is returned.

A file may safely be truncated while it is opened.

Prototype int tsfs_file_truncate (const char * p_path,
tsfs_file_size_t new_sz);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path to the file to be truncated.
new_sz Size of the file after truncation in bytes.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_write()Function

<tsfs_file.h>

Writes the supplied buffer to the given file.

The number of bytes written is returned through p_wr_sz. The returned value may be smaller than
wr_sz if, and only if, the file system is full. In this case RTNC_FULL is returned and the value pointed to
by p_wr_sz indicates the number of bytes written before the file system becomes full.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 60

Prototype int tsfs_file_write (tsfs_file_hndl_t hndl,
const void * p_buf,
tsfs_file_size_t wr_sz,
tsfs_file_size_t * p_wr_sz);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl File handle.
p_buf Buffer to be written.
wr_sz Size of the buffer to be written in bytes.
p_wr_sz Size of the written data in bytes.

Returned
Errors

RTNC_SUCCESS
RTNC_FULL
RTNC_IO_ERR
RTNC_FATAL

tsfs_format()Function

<tsfs.h>

Formats the given file system instance.

Prototype int tsfs_format (const char * p_fs_name,
const void * p_params);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_fs_name Name of the file system instance to be formatted.
p_params Optional format parameters (set to NULL for default).

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_media_get()Function

<tsfs.h>

Gets the media used by the given file system instance.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 61

Prototype int tsfs_media_get (const char * p_fs_name,
bp_media_hndl_t * p_media_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_fs_name Name of the file system instance.
p_media_hndl Retrieved media handle.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_FATAL

tsfs_mount()Function

<tsfs.h>

Mounts the file system residing on the given media. If the media has not been previously formatted
using tsfs_format() or the on-disk format is invalid, RTNC_INVALID_FMT is returned.

Prototype int tsfs_mount (const char * p_fs_name);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_fs_name Name of the file system instance to be mounted.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_INVALID_FMT
RTNC_IO_ERR
RTNC_FATAL

tsfs_revert()Function

<tsfs.h>

Returns the file system to the state it was in at the time of the given snapshot. If the given snapshot
does not exist, RTNC_NOT_FOUND is returned.

Snapshots created after the revert snapshot are deleted. The revert operation is ended by an implicit
commit.

Prototype int tsfs_revert (const char * p_path);

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 62

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path to the snapshot to revert to.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_sshot_create()Function

<tsfs.h>

Takes a snapshot of the current file system state. If the snapshot already exists, RTNC_ALREADY_EXIST is
returned.

Prototype int tsfs_sshot_create (const char * p_fs_name,
const char * p_sshot_name);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_fs_name Name of the file system instance.
p_sshot_name Name of the newly created snapshot.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_ALREADY_EXIST
RTNC_IO_ERR
RTNC_FATAL

tsfs_sshot_delete()Function

<tsfs.h>

Discards the given snapshot.

Prototype int tsfs_sshot_delete (const char * p_fs_name,
const char * p_sshot_name);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 63

Parameters p_fs_name Name of the file system instance.
p_sshot_name Name of the snapshot to be deleted.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_sshot_exists()Function

<tsfs.h>

Verifies whether the snapshot located at the given path exists. The function returns true (through the
p_exist parameter) if the file exists and false otherwise.

Prototype int tsfs_sshot_exists (const char * p_path,
bool * p_exist);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_path Path of the snapshot which existence is to be tested.
p_exist Whether the snapshot located at the given path exists.

Returned
Errors

RTNC_SUCCESS
RTNC_IO_ERR
RTNC_FATAL

tsfs_trace_data_get()Function

<tsfs.h>

Gets the trace data used by the given file system instance.

Prototype int tsfs_trace_data_get (const char * p_fs_name,
void ** pp_tdata);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_fs_name Name of the file system instance.
pp_tdata Retrieved trace data.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 64

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_FATAL

tsfs_unmount()Function

<tsfs.h>

Unmounts the given file system instance.

Prototype int tsfs_unmount (const char * p_fs_name);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_fs_name Name of the file system instance to be unmounted.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_pos_offset_tData Type

<tsfs_file.h>

TSFS file position offset. This type is used to represent file position offsets. It may contain positive or
negative position offsets.

tsfs_file_size_tData Type

<tsfs_file.h>

TSFS file size. This type is used to represent file sizes and positions.

tsfs_cfg_tData Type

<tsfs.h>

File system configuration structure.

Members

media_hndl bp_media_hndl_t Media handle to be bound to the created file system
instance.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 65

max_entry_cnt size_t Maximum number of simultaneously opened files or
directories.

p_seg void * Memory segment for allocating internal file system
structures.

seg_sz size_t Size of the memory segment provided to the file sys-
tem.

p_tdata void * Trace data.

p_ext_cfg const void * Optional extended configuration. Set to NULL for de-
fault.

tsfs_dir_hndl_tData Type

<tsfs_dir.h>

TSFS directory handle. A directory handle is obtained through tsfs_dir_open().

tsfs_file_hndl_tData Type

<tsfs_file.h>

TSFS file handle. A file handle is obtained through tsfs_file_open(). The file handle is internally
tied to a file descriptor that contains the current read/write position.

Many file handles can be obtained for the same file, each handle being tied to a different file descriptor
and thus a different and independent file position.

TSFS_FILE_MODE_RD_ONLYMacro

<tsfs_file.h>

File access mode flags. Access mode flags only affect opened file instances. They do not alter on-disk
file attributes.Allows for write protection on a per-file basis.

TSFS_MAX_INSTANCE_NAME_LENMacro

<tsfs.h>

Maximum number of characters in an instance name excluding the terminating null character.

TSFS_MAX_PATH_LENMacro

<tsfs.h>

Maximum number of characters in a file path excluding the terminating null character.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 API Reference 66

RTNC_*Macro

<util/rtnc.h>

Return codes.

RTNC_SUCCESS Function completed successfully.

RTNC_FATAL Fatal error occurred.

RTNC_NO_RESOURCE Resource allocation failure.

RTNC_IO_ERR Transfer or peripheral operation failed.

RTNC_TIMEOUT Function timed out.

RTNC_NOT_SUPPORTED API, feature or configuration is not supported.

RTNC_NOT_FOUND Requested object not found.

RTNC_ALREADY_EXIST Object already created or allocated.

RTNC_ABORT Operation aborted by software.

RTNC_INVALID_OP Invalid operation.

RTNC_WANT_READ Read operation requested.

RTNC_WANT_WRITE Write operation requested.

RTNC_INVALID_FMT Invalid format.

RTNC_INVALID_PATH Invalid path.

RTNC_CORRUPT Data corrupted.

RTNC_FULL Container full.

RTNC_OVERFLOW Overflow

TSFS_FILE_SEEK_*Macro

<tsfs_file.h>

File seek flags. Indicate where the file offset should be applied from.

TSFS_FILE_SEEK_SET Seek from the beginning.

TSFS_FILE_SEEK_CUR Seek from the current position.

TSFS_FILE_SEEK_END Seek from the end of the file.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

Chapter

8
Document Revision History

The revision history of the TSFS user manual and reference manuals can be found within the TSFS
source package.

TREEspan File System User Manual www.jblopen.com

https://www.jblopen.com

	Introduction
	About the User Manual
	Audience
	Roadmap

	Notation and Conventions
	Storage Devices and Media
	Size and Speed Units
	Text Formatting
	Abbreviations and Acronyms

	Context and Concepts
	File System Basics
	The File Abstraction
	The Directory Abstraction
	File System Integration

	Flash Memory
	Flash vs Block Devices
	Copy-on-Write and Flash Translation Layers
	Wear-leveling
	Bad block management
	Bit Errors and Error Correction
	Managed and Unmanaged flash
	Flash File Systems
	NOR and NAND flash

	Fail-Safety
	Failures and Corruption
	Journaled File Systems
	Transactional File Systems

	TSFS Key Features
	Overview
	Log Structure
	Built-in Flash Support
	Fail-Safety and Write Transactions
	Snapshot Support
	RAM Usage and Scaling
	High-speed Random Write Accesses

	Performances and Space Management
	Preliminary Notions
	Net versus Raw Troughput
	Sustained versus Burst Throughput
	Random versus Sequential Throughput
	CPU Bound versus I/O Bound Perfomances
	Read/Write Amplification
	Read and Write Cache

	Average Net Write Throughput
	Raw Throughput
	Update Size and Alignment
	Transaction Size
	Available Disk Space
	Read Caching
	Write Buffering
	Other Factors

	Worst Case Write Latency
	Block Erase Time
	Latency vs Throughput Trade-off

	Average Net Read Throughput
	Raw Read Throughput
	Read Size and Alignment
	Read Caching
	Other Factors

	Usage
	Initializing and Terminating a File Sytem Instance
	Creating a File or Directory
	Opening and Closing a File or Directory
	Writing to a File
	Reading From a File
	Reading a Directory
	Deleting a File or Directory
	Truncating a File
	Starting and Ending a Write Transaction
	Recovering from Unexpected Interruptions
	Creating and Deleting Snapshots

	Advanced Configuration
	Extended Configuration
	obj_cache_entry_cnt_log2
	obj_cache_assoc_log2
	rd_cache_blk_cnt_log2
	rd_cache_blk_sz_log2
	wr_buf_sz_log2
	max_gc_wr_amp

	Stored Parameters
	blk_sz_log2
	ext_sz_log2
	bf_log2

	API Reference
	tsfs_commit
	tsfs_create
	tsfs_destroy
	tsfs_dir_close
	tsfs_dir_create
	tsfs_dir_delete
	tsfs_dir_exists
	tsfs_dir_open
	tsfs_dir_read
	tsfs_drop
	tsfs_file_append
	tsfs_file_close
	tsfs_file_create
	tsfs_file_delete
	tsfs_file_exists
	tsfs_file_extent_min_sz_set
	tsfs_file_mode_reset
	tsfs_file_mode_set
	tsfs_file_open
	tsfs_file_read
	tsfs_file_seek
	tsfs_file_size_get
	tsfs_file_truncate
	tsfs_file_write
	tsfs_format
	tsfs_media_get
	tsfs_mount
	tsfs_revert
	tsfs_sshot_create
	tsfs_sshot_delete
	tsfs_sshot_exists
	tsfs_trace_data_get
	tsfs_unmount
	tsfs_file_pos_offset_t
	tsfs_file_size_t
	tsfs_cfg_t
	tsfs_dir_hndl_t
	tsfs_file_hndl_t
	TSFS_FILE_MODE_RD_ONLY
	TSFS_MAX_INSTANCE_NAME_LEN
	TSFS_MAX_PATH_LEN
	RTNC_*
	TSFS_FILE_SEEK_*

	Document Revision History

