
UM0001

November 20, 2020

� �

�������
�	
��������������������

BASEplatformUserManual

Copyright
© 2017-2020 JBLopen Inc.
All rights reserved. No part of this document and any associated software may be reproduced,
distributed or transmitted in any form or by any means without the prior written consent of JBLopen Inc.

Disclaimer
While JBLopen Inc. has made every attempt to ensure the accuracy of the information contained in this
publication, JBLopen Inc. cannot warrant the accuracy of completeness of such information. JBLopen
Inc. may change, add or remove any content in this publication at any time without notice.

All the information contained in this publication as well as any associated material, including software,
scripts, and examples are provided “as is”. JBLopen Inc. makes no express or implied warranty of any
kind, including warranty of merchantability, noninfringement of intellectual property, or fitness for a
particular purpose. In no event shall JBLopen Inc. be held liable for any damage resulting from the use
or inability to use the information contained therein or any other associated material.

Trademark
JBLopen, the JBLopen logo, TREEspanTM and BASEplatformTM are trademarks of JBLopen Inc. All other
trademarks are trademarks or registered trademarks of their respective owners.

Contents

1 Introduction 1
1.1 About the User Manual . 1

1.1.1 Audience . 1
1.1.2 Additional Documentation . 1

1.2 Notation and Conventions . 2
1.2.1 Size and Speed Units . 2
1.2.2 Text Formatting . 2
1.2.3 Abbreviations and Acronyms . 2

2 What is the BASEplatform 4
2.1 Introduction . 4
2.2 Key Features . 4
2.3 Requirements . 5

2.3.1 Timebase Recommendations . 5
2.4 Bare-Metal, RTOS and Third-Party Software . 5
2.5 Native vs. Hosted . 6

2.5.1 Native Configuration . 6
2.5.2 Hosted Configuration . 6

2.6 Conclusion . 6

3 Modules Overview 7
3.1 Introduction . 7
3.2 Top-Level Modules . 7
3.3 Hardware Specific Modules . 9
3.4 Integration Modules . 10
3.5 Conclusion . 10

4 Structure of the BASEplatform 11
4.1 Introduction . 11
4.2 Configuration Files . 13
4.3 Platform Structure . 13
4.4 Simplified Platform Module Dependency Tree . 15

4.4.1 Architecture Level . 15

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents ii

4.4.2 SoC Level . 16
4.4.3 Board Level . 16

4.5 Typical Peripheral Stack Dependency Tree . 16
4.6 Conclusion . 17

5 Module Lifecycle 18
5.1 Introduction . 18

5.1.1 Multi-Instance Modules . 18
5.1.2 Single-Instance Modules . 18
5.1.3 Exceptions . 19

5.2 Lifecycle Overview . 19
5.3 Lifecycle Details . 20

5.3.1 Creating a Module . 20
5.3.2 Configuring a Module . 21
5.3.3 Enabling a Module . 21
5.3.4 Disabling a Module . 21
5.3.5 Resetting a Module . 22
5.3.6 Destroying a Module . 22
5.3.7 Transition and Recovery from an Error State . 22

5.4 Conclusion . 22

6 Memory Management 23
6.1 Introduction . 23
6.2 Overview . 23

6.2.1 The Default Allocator . 23
6.2.2 To Free or Not to Free . 24
6.2.3 Self-Contained Allocator . 24
6.2.4 Allocator Drivers . 24

6.3 Usage . 25
6.3.1 Create an Allocator . 25
6.3.2 Set the Default Allocator . 25
6.3.3 Allocate and Free Memory From the Default Allocator 26
6.3.4 Allocate and Free Memory From a Specific Allocator 26
6.3.5 Query the Remaining Memory . 27

6.4 Conclusion . 27

7 Error Handling 28
7.1 Introduction . 28
7.2 Overview . 28
7.3 Return Codes . 29
7.4 Fatal Errors . 30
7.5 Assertion Checks . 30
7.6 Recommended Method for Handling Return Codes . 30
7.7 Conclusion . 31

8 Configuration 32
8.1 Introduction . 32
8.2 Overview . 32

8.2.1 Rationale . 32
8.3 Configuration Files . 33

8.3.1 bp_cfg.h . 33
8.3.2 bp_arch_def_cfg.h . 34

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents iii

8.3.3 bp_board_def_cfg.h . 34
8.4 Conclusion . 34

9 Time and Timer 35
9.1 Introduction . 35
9.2 Overview . 35

9.2.1 The Time Module . 35
9.2.2 The Timer Module . 35

9.3 Primary Timebase . 36
9.4 Initialization . 36
9.5 Time Module Usage . 36

9.5.1 Querying the Time . 36
9.5.2 Getting the Timebase Frequency . 38
9.5.3 Delays . 38
9.5.4 Busy-Wait and Interrupt Based Delays . 39

9.6 Timer Module Usage . 40
9.6.1 Creating and Destroying a Timer . 40
9.6.2 Timer Callback . 40
9.6.3 Starting a Timer . 41
9.6.4 Periodic Timer . 41
9.6.5 Restarting a Timer . 42
9.6.6 Stopping a Timer . 43

9.7 Conclusion . 43

10 Interrupt Management 44
10.1 Introduction . 44
10.2 A Word on Platform Interrupt Support . 44
10.3 Initialization . 44
10.4 Usage . 45

10.4.1 Registering an Interrupt Service Routine . 45
10.4.2 Enabling an Interrupt . 46
10.4.3 Disabling an Interrupt . 46
10.4.4 Configuring an Interrupt Priority and Type . 46

10.5 Conclusion . 47

11 Critical Section and Spin Lock 48
11.1 Introduction . 48
11.2 What’s a Critical Section? . 48
11.3 What’s a spinlock? . 49
11.4 Restrictions and Recommended Usage . 49
11.5 Critical Section Usage . 49
11.6 Spinlock Usage . 50

11.6.1 Alternative Acquire and Release API . 50
11.7 Conclusion . 51

12 Cache Management 53
12.1 Introduction . 53
12.2 Overview . 53
12.3 Usage . 53

12.3.1 Invalidate the Entire Cache . 54
12.3.2 Cache Clean . 54
12.3.3 Cache Invalidate . 54

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents iv

12.3.4 Query the Data Cache Line Size . 55
12.4 Conclusion . 56

13 Universal Asynchronous Receiver Transmitter (UART) 57
13.1 Introduction . 57
13.2 Overview . 57
13.3 Lifecycle . 58

13.3.1 Create . 58
13.3.2 Configure . 59
13.3.3 Enable . 60
13.3.4 Disable . 60
13.3.5 Destroy . 61
13.3.6 Reset . 61

13.4 Basic Usage . 62
13.4.1 Transmission . 62
13.4.2 Reception . 62
13.4.3 Flushing the UART FIFOs . 63

13.5 Asynchronous I/O . 64
13.5.1 Asynchronous Transmission . 65
13.5.2 Asynchronous Reception . 65
13.5.3 Aborting an Asynchronous Transfer . 66
13.5.4 Waiting for a UART Interface to be Idle . 66

13.6 Direct Access to the Driver . 67
13.6.1 Retrieving the Driver Handle . 67
13.6.2 Locking the UART Module Instance . 67
13.6.3 Calling a Driver API . 68
13.6.4 Alternative Driver Calling Method . 69

13.7 Conclusion . 69

14 Serial Peripheral Interface (SPI) 70
14.1 Introduction . 70
14.2 Overview . 70
14.3 Lifecycle . 70

14.3.1 Create . 71
14.3.2 Configure . 72
14.3.3 Enable . 73
14.3.4 Disable . 73
14.3.5 Destroy . 74
14.3.6 Reset . 74

14.4 Basic Usage . 75
14.4.1 Chip Select and De-Select . 75
14.4.2 Master SPI Transfer . 75

14.5 Asynchronous I/O . 76
14.5.1 Asynchronous Transfer . 77
14.5.2 Aborting an Asynchronous Transfer . 78
14.5.3 Waiting for an SPI Interface to be Idle . 78

14.6 Direct Access to the Driver . 79
14.6.1 Retrieving the Driver Handle . 79
14.6.2 Locking an SPI Module Instance . 79
14.6.3 Calling a Driver API . 80
14.6.4 Alternative Driver Calling Method . 80

14.7 Conclusion . 81

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents v

15 Inter-Integrated Circuit (I2C) 82
15.1 Introduction . 82
15.2 Overview . 82
15.3 Lifecycle . 83

15.3.1 Create . 83
15.3.2 Configure . 84
15.3.3 Enable . 85
15.3.4 Disable . 85
15.3.5 Destroy . 86
15.3.6 Reset . 86

15.4 Basic Usage . 87
15.4.1 Master Transfer . 87

15.5 Asynchronous I/O . 88
15.5.1 Master Asyncrhronous Transfer . 89
15.5.2 Aborting an Asynchronous Transfer . 89
15.5.3 Waiting for an I2C Interface to be Idle . 90

15.6 Direct Access to the Driver . 90
15.6.1 Retrieving the Driver Handle . 90
15.6.2 Locking the I2C Module Instance . 91
15.6.3 Calling a Driver API . 91
15.6.4 Alternative Driver Calling Method . 92

15.7 Conclusion . 92

16 General Purpose I/O (GPIO) 94
16.1 Introduction . 94
16.2 Overview . 94

16.2.1 Effect of Disabling or Resetting the GPIO Module 95
16.2.2 Using the GPIO Module to Interface With I/O Expanders 95
16.2.3 Pin and Bank Numbering . 95

16.3 Lifecycle . 95
16.3.1 Create . 95
16.3.2 Enable . 96
16.3.3 Disable . 97
16.3.4 Destroy . 97
16.3.5 Reset . 98

16.4 Usage . 98
16.4.1 Setting the Direction of a GPIO Pin . 98
16.4.2 Setting The State of a GPIO Pin . 99
16.4.3 Reading The State of a GPIO Pin . 99

16.5 Direct Access to the Driver . 100
16.5.1 Retrieving the Driver Handle . 100
16.5.2 Calling a Driver API . 101
16.5.3 Alternative Driver Calling Method . 101

16.6 Conclusion . 102

17 API Reference Manual 103
17.1 Architecture . 103

17.1.1 bp_irq_flag_t . 103
17.1.2 BP_ARCH_ADDR_SZ . 103
17.1.3 BP_ARCH_ALIGN_MAX . 103
17.1.4 BP_ARCH_COMPILER . 104

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents vi

17.1.5 BP_ARCH_CORE_ID_GET . 104
17.1.6 BP_ARCH_CPU . 104
17.1.7 BP_ARCH_DEBUG_BREAK . 104
17.1.8 BP_ARCH_ENDIAN . 104
17.1.9 BP_ARCH_INT_DIS . 104
17.1.10 BP_ARCH_INT_EN . 104
17.1.11 BP_ARCH_IS_CRIT . 105
17.1.12 BP_ARCH_IS_INT . 105
17.1.13 BP_ARCH_IS_INT_OR_CRIT . 105
17.1.14 BP_ARCH_MB . 105
17.1.15 BP_ARCH_PANIC . 105
17.1.16 BP_ARCH_RMB . 105
17.1.17 BP_ARCH_SEV . 105
17.1.18 BP_ARCH_WFE . 106
17.1.19 BP_ARCH_WFI . 106
17.1.20 BP_ARCH_WMB . 106

17.2 Cache Management . 106
17.2.1 bp_cache_dcache_inv_all . 106
17.2.2 bp_cache_dcache_max_line_get . 107
17.2.3 bp_cache_dcache_min_line_get . 107
17.2.4 bp_cache_dcache_range_clean . 108
17.2.5 bp_cache_dcache_range_cleaninv . 108
17.2.6 bp_cache_dcache_range_inv . 109
17.2.7 bp_cache_icache_inv_all . 109

17.3 Spinlocks . 110
17.3.1 bp_critical_section_enter . 110
17.3.2 bp_critical_section_exit . 110
17.3.3 bp_slock_acquire . 111
17.3.4 bp_slock_acquire_irq_dis . 111
17.3.5 bp_slock_acquire_irq_save . 112
17.3.6 bp_slock_release . 112
17.3.7 bp_slock_release_irq_en . 112
17.3.8 bp_slock_release_irq_restore . 113
17.3.9 bp_slock_t . 113

17.4 Time . 113
17.4.1 bp_time_freq_get . 114
17.4.2 bp_time_get . 114
17.4.3 bp_time_get32 . 114
17.4.4 bp_time_get_ms . 115
17.4.5 bp_time_get_ms32 . 115
17.4.6 bp_time_get_ns . 116
17.4.7 bp_time_get_ns32 . 116
17.4.8 bp_time_halt . 116
17.4.9 bp_time_init . 117
17.4.10 bp_time_ms_to_raw . 117
17.4.11 bp_time_ms_to_raw32 . 117
17.4.12 bp_time_ns_to_raw . 118
17.4.13 bp_time_ns_to_raw32 . 118
17.4.14 bp_time_raw_to_ms . 119
17.4.15 bp_time_raw_to_ms32 . 119
17.4.16 bp_time_raw_to_ns . 119

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents vii

17.4.17 bp_time_raw_to_ns32 . 120
17.4.18 bp_time_resume . 120
17.4.19 bp_time_sleep . 121
17.4.20 bp_time_sleep32 . 121
17.4.21 bp_time_sleep_busy . 122
17.4.22 bp_time_sleep_busy32 . 122
17.4.23 bp_time_sleep_busy_ms . 123
17.4.24 bp_time_sleep_busy_ns . 124
17.4.25 bp_time_sleep_ms . 124
17.4.26 bp_time_sleep_ns . 125
17.4.27 bp_time_sleep_yield . 125
17.4.28 bp_time_sleep_yield32 . 126
17.4.29 bp_time_sleep_yield_ms . 126
17.4.30 bp_time_sleep_yield_ns . 127

17.5 Timers . 127
17.5.1 bp_timer_create . 127
17.5.2 bp_timer_destroy . 128
17.5.3 bp_timer_halt . 128
17.5.4 bp_timer_init . 129
17.5.5 bp_timer_restart . 129
17.5.6 bp_timer_restart_ms . 130
17.5.7 bp_timer_restart_ns . 130
17.5.8 bp_timer_resume . 131
17.5.9 bp_timer_start . 131
17.5.10 bp_timer_start_ms . 131
17.5.11 bp_timer_start_ns . 132
17.5.12 bp_timer_stop . 132
17.5.13 bp_timer_target_get . 133
17.5.14 bp_timer_action_t . 133
17.5.15 bp_timer_cb_t . 134
17.5.16 bp_timer_hndl_t . 134

17.6 Platform Clocks . 134
17.6.1 bp_clock_core_freq_get . 135
17.6.2 bp_clock_dis . 135
17.6.3 bp_clock_en . 135
17.6.4 bp_clock_freq_get . 136
17.6.5 bp_clock_gate_id_is_valid . 136
17.6.6 bp_clock_id_is_valid . 137
17.6.7 bp_clock_is_en . 137

17.7 Platform Resets . 138
17.7.1 bp_periph_reset_assert . 138
17.7.2 bp_periph_reset_deassert . 138
17.7.3 bp_periph_reset_id_is_valid . 139
17.7.4 bp_periph_reset_is_asserted . 139

17.8 Interrupt Management . 140
17.8.1 bp_int_arg_get . 140
17.8.2 bp_int_dis . 140
17.8.3 bp_int_en . 141
17.8.4 bp_int_id_is_valid . 141
17.8.5 bp_int_init . 142
17.8.6 bp_int_prio_get . 142

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents viii

17.8.7 bp_int_prio_highest_get . 142
17.8.8 bp_int_prio_lowest_get . 143
17.8.9 bp_int_prio_next_get . 143
17.8.10 bp_int_prio_prev_get . 144
17.8.11 bp_int_prio_set . 144
17.8.12 bp_int_reg . 144
17.8.13 bp_int_src_dis . 145
17.8.14 bp_int_src_en . 145
17.8.15 bp_int_src_is_en . 146
17.8.16 bp_int_trig . 146
17.8.17 bp_int_type_get . 147
17.8.18 bp_int_type_set . 147
17.8.19 bp_int_type_t . 148
17.8.20 bp_int_handler_t . 148
17.8.21 BP_INT_ID_NONE . 149
17.8.22 BP_INT_TYPE_IS_VALID . 149

17.9 Interrupt SMP Extension . 149
17.9.1 bp_int_smp_src_dis . 149
17.9.2 bp_int_smp_src_en . 150
17.9.3 bp_int_smp_trig . 150

17.10 MEM . 151
17.10.1 bp_mem_alloc . 151
17.10.2 bp_mem_alloc_create . 151
17.10.3 bp_mem_alloc_destroy . 152
17.10.4 bp_mem_alloc_dflt_get . 152
17.10.5 bp_mem_alloc_dflt_set . 153
17.10.6 bp_mem_alloc_from . 153
17.10.7 bp_mem_free . 154
17.10.8 bp_mem_free_from . 154
17.10.9 bp_mem_lock_acquire . 155
17.10.10 bp_mem_lock_release . 155
17.10.11 bp_mem_alloc_def_t . 156
17.10.12 bp_mem_alloc_drv_t . 156
17.10.13 bp_mem_alloc_hndl_t . 156
17.10.14 bp_mem_alloc_inst_t . 156
17.10.15 BP_MEM_ALLOC_HNDL_IS_NULL . 157
17.10.16 BP_MEM_NULL_HNDL . 157

17.11 GPIO . 157
17.11.1 bp_gpio_create . 158
17.11.2 bp_gpio_data_get . 159
17.11.3 bp_gpio_data_set . 159
17.11.4 bp_gpio_data_tog . 160
17.11.5 bp_gpio_destroy . 160
17.11.6 bp_gpio_dir_get . 161
17.11.7 bp_gpio_dir_set . 161
17.11.8 bp_gpio_dis . 162
17.11.9 bp_gpio_drv_hndl_get . 162
17.11.10 bp_gpio_en . 163
17.11.11 bp_gpio_hndl_get . 163
17.11.12 bp_gpio_is_en . 164
17.11.13 bp_gpio_reset . 164

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents ix

17.11.14 bp_gpio_dir_t . 165
17.11.15 bp_gpio_board_def_t . 165
17.11.16 bp_gpio_drv_hndl_t . 166
17.11.17 bp_gpio_hndl_t . 166
17.11.18 bp_gpio_soc_def_t . 166
17.11.19 BP_GPIO_HNDL_IS_NULL . 167
17.11.20 BP_GPIO_NULL_HNDL . 167

17.12 I2C . 167
17.12.1 bp_i2c_acquire . 167
17.12.2 bp_i2c_addr_is_10b . 168
17.12.3 bp_i2c_addr_is_valid . 168
17.12.4 bp_i2c_cfg_get . 169
17.12.5 bp_i2c_cfg_set . 169
17.12.6 bp_i2c_create . 171
17.12.7 bp_i2c_destroy . 172
17.12.8 bp_i2c_dis . 172
17.12.9 bp_i2c_drv_hndl_get . 173
17.12.10 bp_i2c_en . 173
17.12.11 bp_i2c_flush . 174
17.12.12 bp_i2c_hndl_get . 174
17.12.13 bp_i2c_idle_wait . 175
17.12.14 bp_i2c_is_en . 175
17.12.15 bp_i2c_release . 176
17.12.16 bp_i2c_reset . 176
17.12.17 bp_i2c_xfer . 176
17.12.18 bp_i2c_xfer_async . 178
17.12.19 bp_i2c_xfer_async_abort . 179
17.12.20 bp_i2c_action_t . 180
17.12.21 bp_i2c_dir_t . 180
17.12.22 bp_i2c_async_cb_t . 180
17.12.23 bp_i2c_board_def_t . 181
17.12.24 bp_i2c_cfg_t . 182
17.12.25 bp_i2c_drv_hndl_t . 182
17.12.26 bp_i2c_hndl_t . 182
17.12.27 bp_i2c_soc_def_t . 182
17.12.28 bp_i2c_tf_t . 183
17.12.29 BP_I2C_10B_SLV_ADDR_MASK . 183
17.12.30 BP_I2C_HNDL_IS_NULL . 183
17.12.31 BP_I2C_MAX_10B_SLV_ADDR . 184
17.12.32 BP_I2C_MAX_SLV_ADDR . 184
17.12.33 BP_I2C_MIN_10B_SLV_ADDR . 184
17.12.34 BP_I2C_NULL_HNDL . 184
17.12.35 BP_I2C_SLV_ADDR_MASK . 184

17.13 SPI . 184
17.13.1 bp_spi_cfg_get . 184
17.13.2 bp_spi_cfg_set . 185
17.13.3 bp_spi_create . 186
17.13.4 bp_spi_destroy . 187
17.13.5 bp_spi_dis . 188
17.13.6 bp_spi_drv_hndl_get . 189
17.13.7 bp_spi_en . 189

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents x

17.13.8 bp_spi_flush . 189
17.13.9 bp_spi_hndl_get . 190
17.13.10 bp_spi_idle_wait . 190
17.13.11 bp_spi_is_en . 191
17.13.12 bp_spi_reset . 191
17.13.13 bp_spi_slave_desel . 192
17.13.14 bp_spi_slave_sel . 192
17.13.15 bp_spi_xfer . 193
17.13.16 bp_spi_xfer_async . 194
17.13.17 bp_spi_xfer_async_abort . 195
17.13.18 bp_spi_action_t . 196
17.13.19 bp_spi_async_cb_t . 196
17.13.20 bp_spi_board_def_t . 197
17.13.21 bp_spi_cfg_t . 197
17.13.22 bp_spi_drv_hndl_t . 198
17.13.23 bp_spi_hndl_t . 198
17.13.24 bp_spi_soc_def_t . 198
17.13.25 bp_spi_tf_t . 199
17.13.26 BP_SPI_HNDL_IS_NULL . 199
17.13.27 BP_SPI_NULL_HNDL . 199
17.13.28 BP_SPI_SS_NONE . 199

17.14 UART . 200
17.14.1 bp_uart_acquire . 200
17.14.2 bp_uart_cfg_get . 200
17.14.3 bp_uart_cfg_set . 201
17.14.4 bp_uart_create . 202
17.14.5 bp_uart_destroy . 203
17.14.6 bp_uart_dis . 204
17.14.7 bp_uart_drv_hndl_get . 204
17.14.8 bp_uart_en . 205
17.14.9 bp_uart_hndl_get . 205
17.14.10 bp_uart_is_en . 206
17.14.11 bp_uart_release . 206
17.14.12 bp_uart_reset . 207
17.14.13 bp_uart_rx . 207
17.14.14 bp_uart_rx_async . 208
17.14.15 bp_uart_rx_async_abort . 209
17.14.16 bp_uart_rx_flush . 210
17.14.17 bp_uart_rx_idle_wait . 210
17.14.18 bp_uart_tx . 210
17.14.19 bp_uart_tx_async . 211
17.14.20 bp_uart_tx_async_abort . 212
17.14.21 bp_uart_tx_flush . 213
17.14.22 bp_uart_tx_idle_wait . 213
17.14.23 bp_uart_action_t . 214
17.14.24 bp_uart_parity_t . 214
17.14.25 bp_uart_stop_bits_t . 214
17.14.26 bp_uart_async_cb_t . 215
17.14.27 bp_uart_board_def_t . 215
17.14.28 bp_uart_cfg_t . 216
17.14.29 bp_uart_drv_hndl_t . 216

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents xi

17.14.30 bp_uart_hndl_t . 216
17.14.31 bp_uart_soc_def_t . 217
17.14.32 bp_uart_tf_t . 217
17.14.33 BP_UART_ACTION_IS_VALID . 217
17.14.34 BP_UART_HNDL_IS_NULL . 217
17.14.35 BP_UART_NULL_HNDL . 218
17.14.36 BP_UART_PARITY_IS_VALID . 218
17.14.37 BP_UART_STOP_BITS_IS_VALID . 218
17.14.38 BP_UART_STOP_BITS_IS_VALID . 218

17.15 Storage Media . 218
17.15.1 bp_media_dis . 219
17.15.2 bp_media_en . 220
17.15.3 bp_media_erase . 220
17.15.4 bp_media_is_en . 221
17.15.5 bp_media_prop_get . 221
17.15.6 bp_media_read . 222
17.15.7 bp_media_reset . 223
17.15.8 bp_media_write . 223
17.15.9 bp_media_hndl_t . 224
17.15.10 bp_media_prop_t . 224
17.15.11 BP_MEDIA_HNDL_IS_NULL . 225
17.15.12 BP_MEDIA_NULL_HNDL . 225

17.16 QSPI Memory . 225
17.16.1 bp_qspi_mem_cfg_get . 226
17.16.2 bp_qspi_mem_cfg_set . 226
17.16.3 bp_qspi_mem_create . 227
17.16.4 bp_qspi_mem_destroy . 228
17.16.5 bp_qspi_mem_dis . 228
17.16.6 bp_qspi_mem_en . 229
17.16.7 bp_qspi_mem_erase . 229
17.16.8 bp_qspi_mem_is_en . 230
17.16.9 bp_qspi_mem_media_prop_get . 230
17.16.10 bp_qspi_mem_prop_get . 231
17.16.11 bp_qspi_mem_read . 231
17.16.12 bp_qspi_mem_reset . 232
17.16.13 bp_qspi_mem_write . 233
17.16.14 bp_qspi_mem_xip_dis . 233
17.16.15 bp_qspi_mem_xip_en . 234
17.16.16 bp_qspi_mem_xip_is_en . 235
17.16.17 bp_qspi_mem_ddr_mode_t . 235
17.16.18 bp_qspi_mem_mode_t . 235
17.16.19 bp_qspi_mem_timing_tbl_t . 236
17.16.20 bp_qspi_mem_board_def_t . 236
17.16.21 bp_qspi_mem_cfg_t . 236
17.16.22 bp_qspi_mem_drv_hndl_t . 237
17.16.23 bp_qspi_mem_inst_t . 237
17.16.24 bp_qspi_mem_op_timing_tbl_t . 237
17.16.25 bp_qspi_mem_part_def_t . 238
17.16.26 bp_qspi_mem_prop_t . 239
17.16.27 BP_QSPI_MEM_DDR_MODE_IS_VALID . 239
17.16.28 BP_QSPI_MEM_MODE_IS_VALID . 239

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents xii

17.16.29 BP_QSPI_MEM_TIMING_TBL_COL_CNT . 239
17.17 Error Codes . 239

17.17.1 RTNC_* . 239
17.18 Architecture Definitions . 240

17.18.1 BP_ARCH_CPU_ARM_V5 . 240
17.18.2 BP_ARCH_CPU_ARM_V6 . 240
17.18.3 BP_ARCH_CPU_ARM_V6M . 240
17.18.4 BP_ARCH_CPU_ARM_V7AR . 241
17.18.5 BP_ARCH_CPU_ARM_V7M . 241
17.18.6 BP_ARCH_CPU_ARM_V8A . 241
17.18.7 BP_ARCH_CPU_ARM_V8M . 241
17.18.8 BP_ARCH_CPU_ARM_V8R . 241
17.18.9 BP_ARCH_CPU_LINUX . 241
17.18.10 BP_ARCH_CPU_MICROBLAZE . 241
17.18.11 BP_ARCH_CPU_NONE . 241
17.18.12 BP_ARCH_CPU_POWERISA2 . 242
17.18.13 BP_ARCH_CPU_SPARCV8 . 242
17.18.14 BP_ARCH_CPU_SPARCV9 . 242

17.19 GPIO Driver . 242
17.19.1 bp_gpio_drv_create_t . 242
17.19.2 bp_gpio_drv_data_get_t . 243
17.19.3 bp_gpio_drv_data_set_t . 243
17.19.4 bp_gpio_drv_data_tog_t . 244
17.19.5 bp_gpio_drv_destroy_t . 244
17.19.6 bp_gpio_drv_dir_get_t . 245
17.19.7 bp_gpio_drv_dir_set_t . 245
17.19.8 bp_gpio_drv_dis_t . 246
17.19.9 bp_gpio_drv_en_t . 246
17.19.10 bp_gpio_drv_is_en_t . 246
17.19.11 bp_gpio_drv_reset_t . 247
17.19.12 BP_GPIO_DRV_HNDL_IS_NULL . 247
17.19.13 BP_GPIO_DRV_NULL_HNDL . 247

17.20 I2C Driver . 247
17.20.1 bp_i2c_drv_cfg_get_t . 248
17.20.2 bp_i2c_drv_cfg_set_t . 248
17.20.3 bp_i2c_drv_create_t . 249
17.20.4 bp_i2c_drv_destroy_t . 249
17.20.5 bp_i2c_drv_dis_t . 250
17.20.6 bp_i2c_drv_en_t . 250
17.20.7 bp_i2c_drv_flush_t . 251
17.20.8 bp_i2c_drv_idle_wait_t . 251
17.20.9 bp_i2c_drv_is_en_t . 251
17.20.10 bp_i2c_drv_reset_t . 252
17.20.11 bp_i2c_drv_xfer_async_abort_t . 252
17.20.12 bp_i2c_drv_xfer_async_t . 253
17.20.13 bp_i2c_drv_xfer_t . 253
17.20.14 BP_I2C_DRV_HNDL_IS_NULL . 254
17.20.15 BP_I2C_DRV_NULL_HNDL . 254

17.21 SPI Driver . 254
17.21.1 bp_spi_drv_cfg_get_t . 255
17.21.2 bp_spi_drv_cfg_set_t . 255

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents xiii

17.21.3 bp_spi_drv_create_t . 256
17.21.4 bp_spi_drv_destroy_t . 256
17.21.5 bp_spi_drv_dis_t . 256
17.21.6 bp_spi_drv_en_t . 257
17.21.7 bp_spi_drv_flush_t . 257
17.21.8 bp_spi_drv_idle_wait_t . 258
17.21.9 bp_spi_drv_is_en_t . 258
17.21.10 bp_spi_drv_reset_t . 259
17.21.11 bp_spi_drv_slave_desel_t . 259
17.21.12 bp_spi_drv_slave_sel_t . 259
17.21.13 bp_spi_drv_xfer_async_abort_t . 260
17.21.14 bp_spi_drv_xfer_async_t . 260
17.21.15 bp_spi_drv_xfer_t . 261
17.21.16 BP_SPI_DRV_HNDL_IS_NULL . 261
17.21.17 BP_SPI_DRV_NULL_HNDL . 262

17.22 UART Driver . 262
17.22.1 bp_uart_cfg_get_t . 262
17.22.2 bp_uart_drv_cfg_set_t . 263
17.22.3 bp_uart_drv_create_t . 263
17.22.4 bp_uart_drv_destroy_t . 264
17.22.5 bp_uart_drv_dis_t . 264
17.22.6 bp_uart_drv_en_t . 265
17.22.7 bp_uart_drv_is_en_t . 265
17.22.8 bp_uart_drv_reset_t . 265
17.22.9 bp_uart_drv_rx_async_abort_t . 266
17.22.10 bp_uart_drv_rx_async_t . 266
17.22.11 bp_uart_drv_rx_flush_t . 267
17.22.12 bp_uart_drv_rx_idle_wait_t . 267
17.22.13 bp_uart_drv_rx_t . 268
17.22.14 bp_uart_drv_tx_async_abort_t . 268
17.22.15 bp_uart_drv_tx_async_t . 269
17.22.16 bp_uart_drv_tx_flush_t . 269
17.22.17 bp_uart_drv_tx_idle_wait_t . 270
17.22.18 bp_uart_drv_tx_t . 270
17.22.19 BP_UART_DRV_HNDL_IS_NULL . 271
17.22.20 BP_UART_DRV_NULL_HNDL . 271

17.23 Timer Implementation . 271
17.23.1 bp_timer_impl_halt . 271
17.23.2 bp_timer_impl_init . 272
17.23.3 bp_timer_impl_next_update . 272
17.23.4 bp_timer_impl_resume . 272

17.24 NOR Driver . 273
17.24.1 bp_qspi_mem_drv_cfg_get_t . 273
17.24.2 bp_qspi_mem_drv_cfg_set_t . 273
17.24.3 bp_qspi_mem_drv_create_t . 274
17.24.4 bp_qspi_mem_drv_destroy_t . 274
17.24.5 bp_qspi_mem_drv_dis_t . 275
17.24.6 bp_qspi_mem_drv_en_t . 275
17.24.7 bp_qspi_mem_drv_erase_t . 276
17.24.8 bp_qspi_mem_drv_is_en_t . 276
17.24.9 bp_qspi_mem_drv_read_t . 276

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Contents xiv

17.24.10 bp_qspi_mem_drv_reset_t . 277
17.24.11 bp_qspi_mem_drv_write_t . 277
17.24.12 bp_qspi_mem_drv_xip_dis_t . 278
17.24.13 bp_qspi_mem_drv_xip_en_t . 279
17.24.14 bp_qspi_mem_drv_xip_is_en_t . 279
17.24.15 bp_qspi_mem_prop_get_t . 279
17.24.16 BP_QSPI_MEM_DRV_HNDL_IS_NULL . 280
17.24.17 BP_QSPI_MEM_DRV_NULL_HNDL . 280

17.25 Media Driver . 280
17.25.1 bp_media_drv_dis_t . 281
17.25.2 bp_media_drv_en_t . 281
17.25.3 bp_media_drv_erase_t . 281
17.25.4 bp_media_drv_is_en_t . 282
17.25.5 bp_media_drv_prop_get_t . 282
17.25.6 bp_media_drv_read_t . 283
17.25.7 bp_media_drv_reset_t . 283
17.25.8 bp_media_drv_write_t . 284

18 Document Revision History 285

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

1
Introduction

1.1 About the User Manual
Welcome to the BASEplatformTM User Manual. This manual covers the structure, inner working and
usage of the BASEplatform cross platform SDK along with examples code for many of the BASEplatform
API. Note that additional documentation should be consulted along with this manual. Those documents
are described in the roadmap section below. Additionally a copy of the BASEplatform API Reference
Manual is included at the end of this manual, see Chapter 17, however a standalone API Reference
Manual is also available from the documentation section of our website.

1.1.1 Audience
This user manual has been written with application designers who are using or are interested in using
the BASEplatform in their project. Some background in embedded and especially C programming is
assumed. Existing BASEplatform customers who want to follow along and experiment with the code
can find a fully functional development project along with a getting started guide for their chosen
platform and IDE within the BASEplatform release package. Readers who are interested in evaluating
the BASEplatform should request an evaluation project are invited to contact us directly.

1.1.2 Additional Documentation
In addition to this user manual readers are advised to look-up the BASEplatform API Reference Manual
available from the documentation section of our website. A copy of the API Reference Manual is also
included at the end of this document, see Chapter 17. Users should also be aware of the following
documents that should be part of their distribution package.

• Platform Reference Manual
• Getting Started Guide
• Hardware Errata Summary Report
• Readme and Changelog
• Test Report

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com/documentation/
https://www.jblopen.com/contact/
https://www.jblopen.com/documentation/
https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 1 Introduction 2

1.2 Notation and Conventions
1.2.1 Size and Speed Units
Sizes and speeds are given using either binary or decimal units, whichever is best to describe the
situation at hand. The most common size units, along with their corresponding values, are given in
Table 1.

Bit unit symbol Value in bits Byte unit symbol Value in bytes

kbit 1000 bits kB 1000 bytes

Kibit 1024 bits KiB 1024 bytes

Mbit 1000 kbit MB 1000 kB

Mibit 1024 Kibit MiB 1024 KiB

Gbit 1000 Mbit GB 1000 MB

Gibit 1024 Mibit GiB 1024 MiB

Tbit 1000 Gbit TB 1000 GB

Tibit 1024 Gibit TiB 1024 GiB

Table 1 – Most common size units and their corresponding values.

1.2.2 Text Formatting
Monospace is used throughout this user manual to indicate an element of code like a function name or
a data type (e.g. bp_time_sleep(), RTNC_SUCCESS, bp_uart_hndl_t).

1.2.3 Abbreviations and Acronyms
Abbreviations and acronyms are used throughout this manual for the sake of conciseness. When a word
or expression appears for the first time, it is written in full, along with the abbreviated form between
parentheses. Subsequent occurrences of the same word or expression can then appear solely in the
abbreviated form. A complete list of abbreviations and acronyms is given in Table 2.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 1 Introduction 3

Abbreviation Meaning

API Application Programming Interface

BSP Board Support Package

CPU Central Processing Unit

eMMC Embedded Multi Media Card

GPIO General Purpose Input Output

I/O Input/Output

I2C Inter-Integrated Circuit

ISR Interrupt Service Routine

MCU Microcontroller

RAM Random Access Memory

RTOS Real-Time Operating System

SD Card Secure Digital Card

SoC System on Chip

SPI Serial Peripheral Interface

TSFS TreeSpan File System

UART Universal Asynchronous Receiver Transmitter

Table 2 – Abbreviations and Acronyms used in this manual.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

2
What is the BASEplatform

2.1 Introduction
The BASEplatform is a modular cross platform SDK written in C designed to offer application developers
with all the necessary software modules, drivers and BSP for a successful embedded application. The
BASEplatform can simplify the integration of the developer’s choice of RTOS or function standalone in a
bare-metal design. The BASEplatform can be used by itself, in a standalone configuration, to provide all
the required support code for a selected platform or it can be integrated with an existing SDK.

The BASEplatform robust API provides all the required functionalities expected by a platform support
SDK such as CPU, core and SoC initialization and control, interrupt management, low-speed serial
communication through GPIO, UART, SPI or I2C and more. On top of that it can also offer mass storage
capabilities, either by itself, or through an additional file system. The BASEplatform storage subsystem
can interface with most types of embedded flash memory such as NOR, NAND and SD/MMC. Finally,
Ethernet and USB connectivity are possible when coupled with a suitable protocol stack.

2.2 Key Features
Cross-platform RTOS agnostic SDK The BASEplatoform can support any MCU or SoC using a portable
API. It also is not tied to a specific RTOS being able to run with both commercial and open source RTOS
or simply in bare metal. The BASEplatform is also able to support a complete platform by itself without
third party code or can be integrated into an existing SDK to extend the functionalities of the native
SDK.

Modular and Adaptable Application developers can use as little or as many BASEplatform modules as
required by the application. For example, the BASEplatform can be used solely to supply a storage
media driver for a file system or the complete platform including low-speed serial communication and
platform initialization and configuration.

SMP, UMP and AMP support The BASEplatform is compatible with uniprocessor, symmetric
multiprocessing (SMP) and asymmetric multiprocessing (AMP) all with the same API.

Robust and Consistent API Since all the modules and drivers are designed and written from scratch the
overall API is consistent from module to module. The error handling is also strictly implemented to offer

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 What is the BASEplatform 5

the best possible reliability all the while reducing the development overhead. Finally, timeouts are
optionally available on all blocking calls, enabling an easy defensive programming approach to handle
unexpected deadlocks or peripheral failures.

External Board Component Support The BASEplatform can include drivers and modules to support
external board components such as sensors, Ethernet PHY, non-volatile storage such as NOR, NAND
and SD/MMC, power management ICs, I/O expanders and more.

2.3 Requirements
The BASEplatform is designed to support the widest range of platforms, toolchains and RTOSes without
compromising features and performance. Platform support can range from small low power MCU to
large heterogeneous multi-core System on Chips. Here’s a short summary of the important system and
toolchain requirements.

• 32 or 64-bit architecture is recommended for optimal performance.
• RAM and ROM requirements are dependent on the chosen RTOS. For estimation purposes, 3-5

KiB of ROM should be allocated per peripheral module and 64 bytes of RAM per peripheral
instance when running in bare-metal.

• SMP (Symmetric MultiProcessing) platforms and AMP (Asymmetric MultiProcessing) applications
on SMP processors (i.e. two RTOS instances on a dual core Cortex-A9) must be cache coherent.

• ISO/IEC 9899:1999 (a.k.a C99) compliant compiler.

2.3.1 Timebase Recommendations
The BASEplatform doesn’t have any firm requirements with respect to the primary timebase. However
for best results it is recommended to use a high-resolution (sub-millisecond) free running counter with
compare-and-match capabilities. Using a high-resolution timer will allow the time and timer modules
to perform and measure sub-millisecond delays. Also using a free-running compare-and-match counter
instead of an auto-reload counter helps reduce jitter and prevent drift of the primary timebase.
Additional information about the primary timebase can be found in Chapter 9.

2.4 Bare-Metal, RTOS and Third-Party Software
The BASEplatform can be used in a bare-metal or RTOS environment. When used with an RTOS the
RTOS kernel port is usually provided by the BASEplatform as well, although it is possible to integrate
the native RTOS port if desired.

The BASEplatform can also integrate other third-party software components. The range of third-party
software that can be integrated is rather large but, for example

• Storage: Embedded Databases and File Systems
• Security: Signing and Encryption Libraries
• Acceleration: Image and Video processing, Crypto engines, FPGA Accelerators
• Communication: Protocol Stacks
• Tools: Debugging and Tracing

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 2 What is the BASEplatform 6

2.5 Native vs. Hosted
To maximize the versatility of the BASEplatform it can be used in two configurations, native and hosted.
Which configuration is used depends on the application needs and current platform support code
provided by the manufacturer.

2.5.1 Native Configuration
When the native configuration is used the BASEplatform is the provider of all the low-level support
code, including the startup code, kernel port if any, interrupt management, etc. The native configuration
is also known as the standalone configuration as in this configuration the BASEplatform is
self-contained and can provide all the services required to function on a specific SoC. Note that the
native configuration can be used in both bare-metal and with a third-party RTOS. It is also possible to
integrate third-party components within a native configuration of the BASEplatform.

2.5.2 Hosted Configuration
In a hosted configuration, the BASEplatform is used on top of an existing SDK. This can be used to
integrate the BASEplatform within a manufacturer’s SDK or to use existing platform support code
provided by the user. The degree of reliance of the BASEplatform on the native SDK or existing code
can vary depending on the provided features of the existing code.

2.6 Conclusion
Whether you need a single driver or support for a complete platform the BASEplatform can help reduce
risk and time to market by providing well designed, tested and documented peripheral driver and
software integration.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

3
Modules Overview

3.1 Introduction
This chapter presents an overview of the major modules found within the BASEplatform. Apart from a
few core modules, most of the modules are optional. An application could use a small number of the
BASEplatform modules while another application could make use of all of them. Modules can be
informally divided, for the sake of this overview, in three categories, top-level modules,
hardware-specific modules and third party integration modules. The following list mostly describes the
top-level modules but this chapter goes over a brief overview of what can be found in the two other
categories.

3.2 Top-Level Modules
Informally, top-level modules are those modules that provides the primary cross platform API of the
BASEplatform. Top-level modules, as the name suggest, are also usually at the top of a stack of modules.
For example, the SPI module is a top-level module, with the same API across all platforms. An SPI driver
for example, for the Xilinx Zynq SoC is not a top-level module. The distinction is somewhat informal,
however, and is mostly used when convenient.

architecture The architecture module or arch for brevity provides both the CPU architecture and
compiler/toolchain abstraction required by the other BASEplatform modules as well as the application.
This includes CPU core control, global interrupt disable/enable, low-level core entry and initialization
functions, memory barriers, etc. The current architecture port files are nearly always fully contains
within the arch module. The arch module has two important dependencies, in the form of configuration
header files, that must be provided by the application.

The first configuration header file which is included from the arch module contains preprocessor macro
definitions that affects nearly all the modules of the BASEplatform. This configuration file is named
bp_cfg.h. This master configuration file contains various important user-configurable parameters. See
Chapter 8 for more details.

The second configuration header file is the architecture definition configuration file,
bp_arch_def_cfg.h. This file should contain a single include directive to include the current

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 3 Modules Overview 8

architecture definition master header file. Those header files are provided with the BASEplatform but
must be selected by this application configuration. This removes the necessity of adding an additional
compiler include path to find the architecture specific header file. It also has the advantages of allowing
those files to have a unique name. Again, see Chapter 8 for more details.

cache For platforms with CPU cache, especially CPU data cache, the cache module provides cache
management function to enable, disable, configure and most importantly clean and invalidate the
caches. The cache management API is most often used by the drivers but can be used by the
application as well when performing DMA transfers from cacheable memory. See Chapter 12 for details
on how to use the cache management API when performing DMA operation.

slock The spinlock and critical section module, abbreviated slock, provides synchronization primitives
suitable for single core and multi-core platforms and are interoperable with both bare-metal or with a
real-time kernel. Additionally, the spinlock API is compatible with bare-metal applications allowing API
compatibility between UMP and SMP applications. For details on using this module for synchronization
read Chapter 11.

time The time module provides the primary high-resolution timebase used by the BASEplatform as well
as time measurement and delay functions. On a typical platform, the time module offers low-jitter
sub-millisecond resulting time measurement and delays. Delays can be in the form of spin loops for short
microsecond length delays or interrupt based for longer delays. See Chapter 9 for more information.

timer The BASEplatform includes high-resolution interrupt based software timers in the form of the
timer module. The software timers are usually of a higher resolution and with a lower overhead
compared to typical kernel software timers. Features of the timer module include the usual choice
between one-shot and auto-reload timers as well as the option of changing the timer period or stopping
the timer within the timer’s callback function. Again, see Chapter 9 for more information.

soc SoC level definitions are used primarily to associate drivers with peripherals and provide those
drivers with important parameters such as the base address and interrupt, reset and clock lines of a
peripheral. Those definitions are provided by the SoC module. The role of SoC level definitions is
explained in more detail in Chapter 4.

board The platform board definition, which includes the complete list of peripheral as well as their name
is provided by the board module. A master header file must be sourced by the application to include the
correct board header file for the current platform. The role of board-level definitions is explained in
more detail in Chapter 4.

clock The clock module is primarily used by the drivers and the application to query the clock
frequency of various peripheral clock lines as well as control the SoC’s clock gates if relevant.

reset The reset module is used to control the peripheral reset lines if they are present within a SoC.

int Control and handling of the SoC interrupts is handled by the interrupt management module, int for
short. The int module allows registering of interrupt service routines(ISR), interrupt enabling and
disabling as well as interrupt priority configuration. For more details see Chapter 10.

util The utility module provides miscellaneous utility and convenience macro mostly used internally by
the BASEplatform. The util module also contains the list of errors return code within the bp_rtnc.h
header file.

gpio The General Purpose Input Output module or gpio provides control over an MCU GPIO lines
including reading/writing and direction control. Chapter 16 covers the gpio module in detail.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 3 Modules Overview 9

uart With the Universal Asynchronous Receiver Transmitter module an application can perform serial
communication using UART or UART-like peripherals. The uart module contains all the usual
functionalities such as baud rate and protocol control, read and write as well as synchronous and
asynchronous, interrupt-driven operation. The uart module is covered in details in Chapter 13.

i2c The Inter-Integrated Circuit module (I2C) module is responsible for serial communication with board
components such as sensors, EEPROM, power management IC and more. The I2C module API has the
usual configuration API with control over the protocol bit rate and addressing mode. Like other serial
communication modules of the BASEplatform the I2C module offers both a synchronous and
asynchronous interrupt driven API. See Chapter 15 for additional details on the i2c module.

spi The Serial Peripheral Interface module enables serial communication with external SPI devices. The
spi module API offers full control over the bit and protocol mode (clock and polarity) of the SPI bus.
Optional control of the chip select line is also available. As usual for the BASEplatform both a
synchronous and asynchronous interrupt driven API is available for communication. See Chapter 14 for
additional details on the spi module.

qspi The Quad-SPI module is used primarily by the media module and storage media subsystem in order
to interface with external non-volatile QSPI NOR and NAND flash memories. The qspi module can
also be used standalone by an application if direct control over the QSPI bus communication is desired.

kernel The kernel module provides an internal kernel API abstraction for the other BASEplatform
module. This allows the BASEplatform modules to work seamlessly with various real time kernels or in a
bare-metal environment.

board_comp The board component module, board_comp for short, is a collection of modules for all
sorts of external components such as non-volatile memories, sensors, I/O expanders, power
management ICs, Ethernet PHYs and more.

soc_comp The SoC component module, soc_comp for short, is a collection of modules to handle most
peripherals found on a System on Chip.

integ The integration module, integ for brevity, is used for the integration of the BASEplatform with
third-party code such as RTOS, SDK and existing customer platform support code.

test The BASEplatform test module contains the test framework and tests of the BASEplatform.

mem The memory management module, mem, provides the primary memory allocator used by the
BASEplatform modules when creating new module instances. Through a selection of multiple memory
allocator drivers it is possible to allow or deny freeing of allocated memory as needed by the application.
It is also possible to configure the BASEplatform to use the C standard heap through malloc and free
instead of its internal heap. For more details see Chapter 6.

media The media module is used to provide a byte-level abstraction to various non-volatile memories
such as NOR, NAND and SD/MMC flash memory. The media module can be used directly by the
application for raw access to a storage media or through a file system such as the TREEspan File System
(TSFS) or a third party file system.

3.3 Hardware Specific Modules
Hardware specific modules as their name suggest are specific to a piece of hardware, whether a SoC’s
peripheral or an external board component. Most hardware-specific modules are located under the SoC

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com/tsfs/
https://www.jblopen.com/tsfs/
https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 3 Modules Overview 10

component or Board component modules and include drivers, implementations as well as other single
instance modules designed to handle specialized peripherals. An example of a hardware-specific module
is an I2C driver for a specific MCU. Another example would be an interface module to an external
power management IC.

3.4 Integration Modules
Finally, integration modules are any module that is designed to integrate a third party component with
the BASEplatform. They can vary wildly in shape and form but include implementation of kernel
abstractions, glue code for manufacturer SDK and compatibility layers.

3.5 Conclusion
This chapter presented a brief overview of the most common modules that comprise the BASEplatform.
Readers are encouraged to read the module’s specific chapters as well as the API reference of each
module for additional details.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

4
Structure of the BASEplatform

4.1 Introduction
The BASEplatform follows a highly modular design which is covered in detail within this chapter.
Intimate knowledge of the content of this chapter is certainly not necessary in order to use the
BASEplatform. However, readers who are interested in the organization and nomenclature of the various
modules may want to read on. This chapter will go over the type of modules that can be found within
the BASEplatform as well as how those modules interact to provide a complete platform support API.

Let’s start with some important definitions.

Module The basic components of the BASEplaform are modules. Everything be it a file, header or API is
contained within a module. Modules often provide a public API also known as an interface to be used
by the application, such as the UART module. Modules may also provide an interface required by
another module, for example a UART peripheral driver module provides a UART driver interface to be
used by the UART module. Modules can be included or excluded from a project as needed by the
application. Modules can also have dependencies, for example a peripheral driver module will probably
require the interrupt management module to register and configure interrupt handlers for the driver.

SoC, CPU and MCU Isolated CPU are a rare sight in embedded system nowadays. The BASEplatform is
designed to support a CPU along with any peripherals used within the System on Chip (SoC). As such
the term CPU, microcontroller(MCU) and SoC are used interchangeably within the documentation.
Unless specified otherwise, when used, the terms CPU, MCU or SoC all refer to the processing cores as
well as any on-chip peripherals. Note that an isolated CPU core is simply referred to as a CPU core or
core for short.

Driver Drivers allow top-level modules to access a SoC’s peripheral. For example, an I2C driver is used
by the I2C module to interact with an I2C peripheral. Drivers can also be used to interacting with
board-level components such as a I/O expander driver allows the GPIO module to access an external
I/O expander. The API provided by a driver is always unique allowing more than one peripheral driver of
one type to be included within an application. For example, a SoC might have two different SPI
peripherals requiring two different drivers.

Drivers are not usually accessed directly by the application, however, drivers can be instantiated alone
without any top-level module. This can be useful to reduce the overhead associated with accessing a

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Structure of the BASEplatform 12

specific peripheral. However, thread safety is usually implemented by the top-level module which
means that accessing a driver directly must be done with care to prevent race conditions.

Port Port files or modules are used to provide the necessary integration between the BASEplatform and
the underlying CPU architecture. Port files related to the CPU core are usually located within the
architecture module and may be comprised of low-level C code and hand-coded assembly. Port files are
also used to provide the core entry function which is executed first by a CPU core and perform any low
level and C environment initialization required by the platform. Finally, architecture port files contain
the necessary compiler abstractions used by the other BASEplatform modules and application.

In addition to the signification described in the previous paragraph, a port may also refer to a kernel port
when the BASEplatform is used with an RTOS.

Implementation Modules of which there can be only a single instance but that require a platform
specific implementation, such as the interrupt management module, do not use a driver to provide the
platform-specific functions. Instead the module’s API is provided directly by the platform specific
implementation. Those modules, simply called implementation, always implement the same API usually
declared in the top-level module’s header file. For example the interrupt management module header
file, bp_int.h is located within the int module. While, for example again, the ARM Generic Interrupt
Controller implementation is located within the arm_gic module. As a consequence there can only be
one implementation of each individual type within an application. Implementations are selected at
compile time by including them within the BASEplatform library or build.

Integration Integration modules are used by the BASEplatform to interoperate with third-party
components. This can include RTOS, manufacturer SDK and customer platform code and other
third-party components. Integration modules are loosely defined and do not have strict API since they
are tailored to the integrated component.

Architecture, Board and SoC Level The BASEplatform attempts to maximize code reuse and
interoperability primarily by structuring the various modules, dependencies and configuration across
three levels or area.

Architecure Level The architecture encompasses the platform’s CPU architecture along with the chosen
toolchain. This means that most modules that are specific to a CPU architecture or to a specific
compiler are architecture-level modules.

SoC Level The System on Chip (SoC) level includes the CPU core (also known as the CPU
implementation) along with all the on-chip peripherals. One can find at the SoC level most peripheral
drivers, memory map definitions, interrupt, clock and reset routing among other things.

Board Level The board level includes more external component as well as everything not included in the
other two levels. This includes external board component drivers and definitions as well as board
support package files. By extension, any application specified files and configurations are considered to
be board-level components. In this context from the BASEplatform point of view, a ”board” can be seen
as a complete platform.

Platform Definitions Platform definitions are used by the BASEplatform primarily to describe a
platform’s components. Information contained within a platform definition include associating
peripheral drivers to peripherals, describing the routing of interrupts, clock and reset lines as well as
describing the interconnection of external components. Definitions are divided in two broad categories,
SoC level definitions and board-level definitions.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Structure of the BASEplatform 13

SoC Level Definitions SoC level definitions describe the current System on Chip, this includes the list of
peripheral drivers as well as interrupt, clock and reset configuration. SoC level definitions can also
include the cache topology and other characteristics. A complete set of SoC definition files are usually
delivered with the BASEplatform and do not require any user modifications.

Board Level Definitions Board level definitions includes all the external board components as well as
any application defined parameters. This can include external peripheral routing, pin configuration,
external constraints such as maximum clock rate, etc.

4.2 Configuration Files
The BASEplatform uses a minimal set of compile-time configurations located in header files provided by
the application. These configuration files are used to set a variety of important preprocessor macro
definitions. There are usually a minimum of three configuration header files. The first one contains
various preprocessor definitions that are applications defined at compile time. The two others are used
to select the master architecture header file as well as the master board definition file. More
information on these configuration files can be found in Chapter 8.

4.3 Platform Structure
A complete platform is comprised of multiple modules to support the CPU architecture, compiler, CPU
core, SoC peripherals and any external board components. Figure 1 shows a diagram of a typical
platform. Note that the diagram below is for a platform supported entirely by the BASEplatform, some
modules may be omitted if the BASEplatform is integrated into an existing SDK or with existing
platform support code.

The modules are divided in five broad categories detailed below. For more details on each module see
Chapter 3 as well as the individual module documentation.

Architecture components At the core of the BASEplatform we find the architecture and compiler
support modules. These modules are nearly always present and provide other modules as well as the
application with interfaces to control the CPU core, cache, MMU and more. The architecture
components also provide the CPU core or cores entry function and low-level initialization of the C
environment. Critical sections as well as spinlocks are also located within this section.

SoC-level components Most of the BASEplatform modules are used to interface with the SoC’s
peripherals. The list of supported peripherals can be very diverse depending on the application needs
but usually includes some core SoC support modules as well as a selection of communication peripheral
modules. The core SoC support modules, to name a few, include the time and timer module and
implementation, interrupt management, peripheral clock, reset control and more. Other ancillary SoC
peripherals may be included as needed. Finally, most applications require at least one external
communication peripheral such as a UART, I2C or SPI. Additional peripherals can also be included as
needed such as QSPI, Ethernet and more.

Board level components Board components can be very diverse including external storage, memory I/O
expander, power management ICs, sensors etc. Some drivers may also require board-level functions and
configurations which are called BSP. However this is relatively rare.

Utility components. The BASEplatform also includes some utility components that don’t involve
peripheral support. These components are primarily used by other BASEplatform modules but can also

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Structure of the BASEplatform 14

Architecture Locks /
Critical Sections

Architecture
Port

Interrupt

Interrupt
Implementation

Cache
Management

Clock

Peripheral Clock
Implementation

Reset

Peripheral Reset
Implementation

SoC Control

UART

UART Driver

SPI

SPI Driver

I2C

I2C Driver

GPIO

GPIO Driver

Media

Media Driver

Media Peripheral
Driver

Ethernet

Ethernet Driver

Memory

Allocator Drivers

Util

Errors

Architecture Level Components Utility Components

SoC Level Components

Third-Party Components

Communication
Stacks File System Manufacturer

SDK RTOS Other Libraries

Figure 1 – Diagram of a typical platform.

be useful to the application. One of the most important of these utility component is the memory
management module which provides the primary memory allocator. The primary memory allocator can
be configured as per the application’s requirement with a certain amount of memory and can allow or
disallow the freeing of allocated memory. Other utility modules include buffer pools, utility macros,
string and byte manipulation, as well as test and debug functions.

Third-Party Integration Finally, various third-party software components may be integrated with the
BASEplatform using integration modules. The most common third party component is a real time kernel
or RTOS, other third-party components can be very diverse such as file systems, Ethernet and USB
communication stacks and many others. Existing SDK or platform support code can also be integrated if
needed.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Structure of the BASEplatform 15

4.4 Simplified Platform Module Dependency Tree
A simplified platform dependency tree is shematised in Figure 2. Individual modules are abstracted but
the three levels of architecture, SoC and Board components is kept as they are key to understanding the
organization of the BASEplatform.

Architecture

SoC

Board

bp_arch_def_cfg.hbp_cfg.h

bp_board_def_cfg.h

Board
Definitions

Figure 2 – Simplified platform dependency tree.

4.4.1 Architecture Level
At the lowest level of the dependency tree, we find the architecture-level components. The modules
included thereof usually do not require any higher-level services from the SoC and board modules.
However there can be exceptions to this general rule. For example, a portion of the cache hierarchy
may be attached to the SoC instead of the CPU core. The most important of the architecture-level
module is the architecture module itself, named ARCH for brevity. Most other modules included at the
architecture level are sub-modules of the ARCH module.

As described earlier in this chapter, the BASEplatform has a global compile time configuration file,
named bp_cfg.h. This configuration file is included from within the ARCH module and is considered a
direct dependency of that module. Any other modules that require access to the definitions located
within bp_cfg.h simply include the necessary header from the ARCH module instead of including the
configuration file directly. This configuration file contains important user configurable parameters which
must be available at compile time. See the Chapter 8 for details.

The ARCH module also requires an additional header file provided by the application named
”bp_arch_def_cfg.h”. This header file should contain a single include directive to the current architecture
port master header file. This master header file allows the baseplatform to access important compiler
and platform abstractions required at compile time. It also allows the BASEplatform to identify
unequivocally the architecture and toolchain used by the application. This method of including the
architecture port master header file allows each port header file to have a unique non-ambiguous name
and remove the necessity of adding an include path entry to the architecture port.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Structure of the BASEplatform 16

4.4.2 SoC Level
The next level, the SoC level contains most of the peripheral modules. Modules at the SoC level usually
have a primary dependency on the architecture-level components as well as various SoC-level modules.
All of the SoC-level modules have a dependency on the SoC definition master header file which is
included through the board definition master header file. The board master header file is included
through an application supplied configuration header file bp_board_def_cfg.h. The SoC header file
contains important definitions and declarations related to the current SoC. From the application point of
view, the SoC header file is included indirectly by selecting the board header file. This is discussed in the
next section. SoC-level modules, and especially most drivers, derive many important parameters such as
a peripheral base address, interrupt clock and reset line from the SoC definitions. This information is
passed to each driver when creating a new module instance at runtime. The SoC definition header file
also contains important preprocessor macro definitions that must be available at compile time and are
used by various modules, for example the total number of interest lines is often defined there.

4.4.3 Board Level
Finally, the board level completes the entire platform. The primary dependency of the board-level
modules and definitions is the board definition master header file which is included through an
application provided configuration header file bp_board_def_cfg.h. This header file should contain
a single include directive to include the board definition file for the current platform.

Some drivers may require additional board-level functions which in this context form part of the board
support package. Those BSP provides board specific functions and configurations that cannot be
derived or configured from the generic SoC definitions and API. It is important to note that most drivers
do not require any BSP component.

4.5 Typical Peripheral Stack Dependency Tree
Most peripherals are supported by a module stack containing a top-level module and a driver. An
example for a UART peripheral is shown in figure Figure 3. The top-level module provides the lifecycle
management functionalities, the driver agnostic top-level API as well as thread safety. Al the while, the
driver is responsible for the interaction with the hardware. When creating a new peripheral module
instance, I2C in this example, a board definition structure for the peripheral to initialize is passed to the
module create function. The board definition contains the name to be given to the peripheral instance,
any board-level configuration or BSP required as well as a link to the SoC definition for that peripheral.
The top-level module uses the SoC definition to find the peripheral driver to be used when accessing
this peripheral. The SoC definition also contains a set of driver specific definitions which are used by the
driver to know the peripheral base address, clock, reset and interrupt lines as well as any other SoC level
parameters required by the driver. Those definitions, especially the SoC definitions, are usually provided
with the BASEplatform and do not have to be written from scratch by the application developer.

The example described in the previous paragraph forms the most basic and also the typical form of a
complete stack of BASEplatform modules enabling the application to interact with a peripheral in a
portable fashion. In general, peripheral module stacks are divided in a generic top-level module that
provides all the necessary abstraction and a driver providing the hardware access functions. In addition,
every driver can also expose additional driver specific API functions to access advanced and optional
features of a hardware peripheral.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 4 Structure of the BASEplatform 17

UART

UART Driver

UART BSP

SoC Definition Board Definition

Driver
SoC Definition

Driver
Board Definition

Figure 3 – Diagram of a typical peripheral stack.

4.6 Conclusion
As mentioned at the start of this chapter, it is not necessary to understand the structure of the
BASEplatform to be able to use it. However a basic understanding of the organization can help. The
three levels of organization, architecture, SoC and board forms the essence of how the BASEplatform is
organized and how it enabled an unprecedented level of portability.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

5
Module Lifecycle

5.1 Introduction
Save for a few exceptions, most modules and drivers of the BASEplatform must be initialized in some
way. This initialization usually happens in three steps in order to create, configure and finally enable a
module. Trivial, low-level modules of which there can be only a single instance, such as an architecture
utility module, may not require any initialization. While slightly more complex modules could require an
initialization and configuration phase but when only a single instance of that module is possible, such as
a SoC clock control module, it will have a single initialization function. This initialization function is
usually suffixed _init, for example bp_time_init(), which must be called prior to using the time
module. Finally, more complex, multi-instance modules, such as the UART module have a full suit of
lifecycle management functions which control creation, destruction, enabling, configuration and much
more. This chapter goes into details over the typical lifecycle of a BASEplatform module.

5.1.1 Multi-Instance Modules
Many modules of the BASEplatform allows the creation of multiple instances of themselves at runtime.
An example of such a module is the UART module which requires one instance of the UART module to
be created for each individual UART peripheral in a system. Multi-instance modules are created at
runtime, for example using the bp_uart_create() function to create a new UART module instance.
In addition, if the memory allocation policy allows freeing memory, multi-instance modules can be
destroyed at runtime as well. For example bp_uart_destroy() can be called to reclaim the memory
used by an existing UART module instance. See the Chapter 6 for more information about allocation
policy.

5.1.2 Single-Instance Modules
For many modules it would not make sense to find more than one instance of those modules within an
application. For example, the interrupt management module. These modules use a simpler lifecycle
management API and only need to be initialized once at runtime, for example by calling
bp_int_init() to initialize the interrupt management module. Usually, single instance modules
cannot be destroyed at runtime even if the memory allocation policy allows the freeing of the module’s

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Module Lifecycle 19

memory. Also, single instance modules usually have a simpler API since it is not required to pass an
instance handle to each API functions.

Additionally, some single instance modules may not have any internal state or need of any allocatable
resources, in these cases it is not necessary to initialize those modules and the init function is omitted.

5.1.3 Exceptions
Some modules due to their complexity or by their design do not follow the generic lifecycle described in
this chapter. Those modules usually require additional initialization steps tailored to the module in
question. A good example of such an exception is the storage media module which can be used along
with a file system and many different types of storage media. Other modules, especially third party
RTOS integration modules, also require a tailor fitted initialization sequence and API which differ from
the usual BASEplatform API. In all cases, readers should refer to the module’s dedicated documentation
for details.

5.2 Lifecycle Overview
Formally a module’s lifecycle can be seen as a set of possible states along with various API to transition
between those states. The range of possible states and transitions is schematized in Figure 4.

The possible states are as follows:

• Created - The module instance was just created or has been reset.
• Configured - The module instance was configured after being created but is not yet enabled.
• Enabled - The module instance is enabled and can be used to perform its intended function.
• Disabled - The module instance is disabled, it cannot be used unless it is enabled first.
• Destroyed - The module instance was destroyed and should no longer be used.
• Error - The module instance has encountered an unexpected condition.

Transition between those states is possible using a set of API functions which, for uniformity, usually
share the same suffixes.

• create() - Creates a new module instance and place that instance in the created state.
• cfg_set() - Configures a module instance. If the module was in the created state, transition to

the configured state otherwise, the configuration is simply updated.
• en() - Enables a module instance after which, if successful, the module instance is in the enabled

state and can be used normally.
• dis() - Disables a module instance leaving it in a disabled state. Most of a module’s API cannot

be used on a disabled module other than reset() and en().
• reset() - Resets a module instance from whichever state it’s in back to the created state. This is

the only call that should be performed on a module in the error state.
• destroy() - Destroys a module instance and, if permitted by the memory allocation policy,

reclaims the memory and resources allocated to the instance.

To summarize the typical lifecycle, a module must be created, configured and then enabled using the
module specific functions to perform those steps. Once enabled, the module can be used to perform its
intended function such as sending and receiving bytes for a communication module. At any point in

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Module Lifecycle 20

Created

Configured

Enabled

Disabled

create()

cfg()

en()

dis()

destroy()

reset()

Error

reset()

en()

From any state

Figure 4 – Typical lifecycle of a BASEplatform module.

time, a variety of other lifecycle management functions can be called to disable, reset and destroy a
module. Module instances within an application may transition multiple times between the various
states as required by the application.

5.3 Lifecycle Details
5.3.1 Creating a Module
The first step in the life of a module instance is to create it. The function to do so for each module is
usually suffixed by _create. For example bp_uart_create() is used to create a new UART module
instance. Module creation functions typically take as an argument a pointer to a module handle through
which the handle to the newly create module will be returned, if successful. Most create functions also
take as an argument a pointer to a module’s board definition structure, this structure contains all the
necessary information required to associate the module instance with a physical peripheral. This
information includes the peripheral name and driver as well as additional driver specific information like
the peripheral base address, interrupt mapping and so on. Once a board definition is associated with a
module instance, it should not be used again to create another module instance unless the previous
module instance is destroyed first.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Module Lifecycle 21

Unless stated otherwise, a module create function is the only function that can allocate resources such
as memory and kernel objects. This means that once created successfully, a module should have all the
resources required to operate for the lifetime of the application. If a module cannot acquire the
resources needed upon creation, every attempt will be made to free any acquired resource to prevent a
memory leak due to the creation failure. The ability to do so may depend on the memory allocation
policy of the default memory allocator. As such, in an application where freeing memory is disallowed,
all modules should be created early in the application lifetime and the memory made available to the
BASEplatform should be sufficient for all the module instances required by the application. See
Chapter 6 for more information on memory allocation policy.

5.3.2 Configuring a Module
Once created, a module should usually be configured. The exact configuration is module specific but
can include, for example, the bit rate as well as protocol parameters. For example, the
bp_uart_cfg_set() function of the UART module takes a structure as an argument to set the baud
rate, parity and number of stop bits of a UART interface. Users should refer to a module’s
documentation for information on each module’s configuration.

For easier portability and to keep the API concise, top-level modules such as the UART or SPI module
have a set of standard configuration parameters such as the bit rate. The standard set of configuration is
designed to accommodate most usage scenarios as well as most SoC peripherals. However, some
peripheral drivers may not support all the possible configuration parameters. Moreover, simple
peripherals with a fixed hardware configuration may work without being configured at all. However, for
better portability it is recommended to always set a module’s configuration before enabling it for the
first time even if it’s not required by the particular device driver used within an application.

As mentioned in the previous paragraph, the BASEplatform modules are designed to accommodate
most usage scenarios and SoC peripherals. That being said the BASEplatform driver API enables the
application to access driver specific configuration functions to access advanced, peripheral specific
features. Readers interested in those features should read each driver’s specific documentation for a list
of driver-specific features.

5.3.3 Enabling a Module
After being created and configured a module should be enabled before being used. For example, using
the UART module bp_uart_en() function. At this point the peripheral module is ready to be used.
The exact effect of enabling a module instance is module and driver specific. In most cases this enables
the module’s clock and input/output pins. When relevant, reception through the peripheral is enabled a
well, such as a UART receive path. Enabling an already enabled module should be without side effects.

5.3.4 Disabling a Module
A module instance in the enabled or configured state can be disabled. For example, using the UART
module bp_uart_dis() function. No operations should be attempted on a disabled instance other
than enabling or resetting the module instance. The exact side effects of disabling a module are driver
specific and usually involve disabling the module clock and disabling the module’s I/O pins to put the
peripheral in a low power state. The peripheral configuration set prior to calling the module disable
function will be retained or restored upon re-enabling the module instance. It is important to note that a
module disable function as well as any other functions other than reset or enable should not be invoked
on an already disabled instance. Doing so means the driver could potentially access a peripheral with an
inactive clock which may cause either a bus fault or a bus hang. When assertion checks are enabled, a
driver may return an RTNC_FATAL error code if an attempt is made to access a disabled peripheral.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 5 Module Lifecycle 22

5.3.5 Resetting a Module
A module in any state, other than destroyed, can be reset. Moreover, reset is the only action allowed on
an instance that has returned an RTNC_FATAL error as described later in this chapter. A reset can be
performed, for example, by calling An example is the UART module bp_uart_reset() function. Upon
reset, a module will be returned to the created state and must subsequently be configured and enabled
again to be functional. Note that resetting a module which is actively performing an operation should be
avoided if possible as the result can be unpredictable. If a module reset is required as part of normal
operation, it is recommended to first disable the module prior to performing the module reset.

In addition to resetting the internal state of the module and its driver, resetting a module will also reset
the hardware peripheral if that operation is supported by the driver. The exact effects of resetting a
peripheral is driver specific, but when available the soft reset feature of the peripheral is used by the
driver. Additionally, if a centralized reset controller is available on the current SoC, the driver can toggle
the reset line of the peripheral.

5.3.6 Destroying a Module
Depending on the allocation policy of the default allocator it may be possible to destroy a module. See
for details on memory allocation. Again for example using the uart module, it is possible to destroy an
instance by calling bp_uart_destroy(). Prior to destroying a module, it is recommended to disable it
to make sure the destroy operation doesn’t corrupt the peripheral’s state. The instance’s module handle
becomes invalid upon successfully returning from the destroy function and should not be used again.

5.3.7 Transition and Recovery from an Error State
A module instance that encounters an unexpected condition, usually an assertion failure, will transition
into the error state. If configured to do so, API functions that encounter a fatal condition will return the
RTNC_FATAL status code to the application. As a general rule, a module where any of its API function
returned RTNC_FATAL should not be used anymore as the internal state might be inconsistent. From the
application point of view, it is recommended to handle a fatal error returned by any API function like any
other unexpected failure. Usually either a platform reset or a transition into a safe state to prevent
further safety degradation. In some cases, application designers may prefer to attempt resetting the
module. This is particularly useful during testing where fault conditions might be injected or simulated.

5.4 Conclusion
The lifecyle of the various BASEplatform modules is central to the BASEplatform’s versatility. An
application may only require a few modules that are initialized and configured at boot time. All the while
another more complex application may require a large variety of modules along with the need to
dynamically create and destroy modules at runtime.

For the sake of clarity, the various BASEplatform modules attempt to follow the lifecycle described
within this chapter. Namely the create - enable - configure - disable - destroy sequence of
functions. More complex modules, however, may possess a unique initialization and configuration
sequence which are documented within those modules’ documentation.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

6
Memory Management

6.1 Introduction
This chapter gives an overview of the memory management module and associated topics related to
memory management within the BASEplatform. Internally, the BASEplatform uses a memory allocator
when creating new modules and objects. This allocator is provided by the memory management module,
or mem for short. The application is also free to use the default allocator as well as create other
instances of allocators for its own needs. Using the memory management module and a selection of
different memory allocator drivers it is possible to change the behaviour of any allocator including the
default one. It is, for example, possible to use a default allocator that prevents the freeing of memory
while another application may prefer an allocation policy where the freeing of memory is allowed. It is
also possible to map one allocator instance to the C library malloc() function to use the C heap
instead of an internal heap. With the flexibility offered by the mem module, the application is able to
select the features of the default memory allocator to suite the application’s requirements and policies.

6.2 Overview
When creating new BASEplatform modules and objects the memory required for these objects is taken
from a internal memory allocator. To increase the flexibility of the memory allocation within the
BASEplatform that default memory allocator is provided by a module in itself, the memory management
module or mem for brevity. The mem module can be used to instantiate one or more memory allocator
and one of them must be set as the default allocator at the discretion of the application. When creating
a new allocator, the application has a choice of different allocator drivers. Those different drivers allow
the application to control the behaviour of any allocator it creates and consequently change the
behaviour of the internal BASEplatform allocation. The application is also free to use the default
allocator through a dedicated API or create new allocators for its own needs.

6.2.1 The Default Allocator
As said in the overview section, the BASEplatform needs an internal allocator when creating new
modules or needs internal objects such as mutexes and semaphores. This default allocator should be
created and set very early in the initialization sequence, otherwise any call that requires memory

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 6 Memory Management 24

allocation will fail. When setting up the default allocator, the application designer should assign a
sufficient amount of memory to it to serve the application’s needs. Also a decision should be made if
freeing allocated memory should be allowed or not. Once set, the default allocator cannot be changed.
However it can be used by the application as well as the BASEplatform.

6.2.2 To Free or Not to Free
When selecting the default allocator, the most important choice is whether or not to allow the freeing
of memory. This decision should be made according to the application’s requirements. This choice
affects the behaviour of the BASEplatform in a few ways. The first and most obvious is that destroying
modules won’t free the memory associated to them, effectively disabling the ability to destroy modules.
Things are a little different with objects, however, such as semaphore, mutexes, timers and so on. With
objects, when freeing is disallowed the objects are returned to a pool for those types of objects. For
example, if a software timer is no longer needed and destroyed in that scenario it will be returned to a
pool of timers. The next time a timer is allocated it will be taken from the pool instead of the heap.

6.2.3 Self-Contained Allocator
By default when creating an allocator the memory needed to hold the mem module metadata is taken
from the default allocator. This is problematic when creating the default allocator itself as there is
nothing to allocate memory from. That is why most allocator drivers have the option of being
self-contained. When self-contained, the memory needed for the mem module instance is taken from
the allocator being created instead of the default allocator.

6.2.4 Allocator Drivers
There are two important drivers available within the BASEplatform along with another more specialized
driver.

Simple Heap The simplest of allocators, the simple heap or just heap allocator uses a contiguous region
of memory that is progressively carved out each time a memory allocation is required. Freeing of
memory is not possible when using the simple heap allocator. This results in the fastest allocation
performance with practically no overhead to track the allocated and free memory. This allocator is
useful for real-time and safety-critical applications that do not wish to perform any dynamic memory
allocation. If used as the default allocator, it also means that once created, the BASEplatform modules
cannot be destroyed.

C Heap Another simple allocator is one that uses the C heap. In this case both allocation and freeing of
memory is possible and the memory used will come from whatever amount of memory is allocated to
the C heap. Although not absolutely necessary, it is recommended to only create one allocator using the
C heap. When using the C heap care should be taken when working in a multithreaded RTOS as the C
malloc and free functions are not always thread-safe. The BASEplatform assumes that its internal
allocator is thread-safe when functioning under an RTOS.

Stack The stack allocator is a specialized allocator that supports freeing but only in the reverse order in
which the memory was allocated. Because of this feature it cannot be used as a general-purpose
allocator nor can it be used for the default allocator. It does have the advantage of very fast allocation
and deallocation with practically no overhead.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 6 Memory Management 25

6.3 Usage
This section goes over the usage of the mem module including how to create an allocator, set the default
allocator and how to allocate and free memory.

6.3.1 Create an Allocator
Whether it’s for the application’s own usage or to be used as the default allocator, the first step in the
life of an allocator is to create it. Creating a new memory allocator instance follows a slightly different
convention compared to most BASEplatform modules. In order not to burden the create API to make it
generic enough to cater to the needs of all the types of allocator drivers, there is no generic create
function in the mem module. Instead a driver create function should be used which will return an
allocator handle. After having created an allocator the generic memory allocation API can be used with
the newly created instance.

For example, to create a new allocator using the heap driver one would use the function as shown in
Listing 2. When creating the allocator it is necessary to include both the mem module header file
bp_mem.h as well as the desired allocator driver’s header, bp_mem_alloc_heap_drv.h in this
example. When simply using the created allocator the driver header file is not required.

#include <mem/bp_mem.h>
#include <mem/allocator/heap/bp_mem_alloc_heap_drv.h>

int rtn;

// Memory area to be managed by the allocator.
uint8_t memory[16u*1024u];

// Variable that will hold the newly created instance handle.
bp_mem_alloc_hndl_t alloc_hndl;

// Simple heap allocator definition structure.
bp_mem_alloc_heap_def_t alloc_def;

alloc_def.p_name = "main allocator";
alloc_def.p_base_addr = memory;
alloc_def.size = sizeof(memory);
alloc_def.self_contained = true;

rtn = bp_mem_alloc_heap_create(&alloc_def, &alloc_hndl);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 1 – Create a new heap allocator.

6.3.2 Set the Default Allocator
Setting the default allocator should be done very early in the initialization sequence using
bp_mem_alloc_dflt_set(). Once set, the default allocator cannot be changed and the assigned
allocator should not be destroyed either. Listing 2 shows an example of setting the default allocator
from an existing allocator handle.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 6 Memory Management 26

#include <mem/bp_mem.h>

int rtn;

rtn = bp_mem_alloc_dflt_set(alloc_hndl);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 2 – Create a new heap allocator.

6.3.3 Allocate and Free Memory From the Default Allocator
Allocating and freeing of memory from the default allocator can be done using bp_mem_alloc() and
bp_mem_free() as depicted in Listing 3. Due to the awkwardness of using a double void pointer
bp_mem_alloc() and bp_mem_alloc_from() returns the status code in a variable passed by
reference as one of the arguments. Thus the allocated memory can be returned through the function
return value. The convention or returning NULL if memory allocation fails is followed here. The status
code can be inspected to see the reason for the failure.

As an additional feature over the traditional C malloc() function, bp_mem_alloc() and
bp_mem_alloc_from() take an additional argument to specify the minimum alignment for the
allocated memory. Passing a value of 0 will use the platform’s default alignment which is usually the
largest possible natural alignment of any datatype.

#include <mem/bp_mem.h>

int rtn;

// Variable to hold the allocated memory pointer.
void *p_mem;

// Allocate 16 bytes.
p_mem = bp_mem_alloc(16u, 0u, &rtn);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

// Free the previously allocated 16 bytes.
rtn = bp_mem_free(p_mem);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 3 – Allocating 16 bytes from the default allocator.

6.3.4 Allocate and Free Memory From a Specific Allocator
Allocating from a specific allocator other than the default allocator is very similar to the previous
example but using bp_mem_alloc_from() and bp_mem_free_from() as shown in Listing 4. The
main difference is the necessity to pass the allocator’s handle as argument. When using this method, it
is important to return the memory to the same allocator it was allocated from. If assertion checks are
enabled (See Chapter 7) some allocators can report that the memory pointer is out of range but that is
not the case for all allocators.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 6 Memory Management 27

#include <mem/bp_mem.h>

int rtn;

// Variable to hold the allocated memory pointer.
void *p_mem;

// Allocate 16 bytes from alloc_hndl.
p_mem = bp_mem_alloc_from(alloc_hndl, 16u, 0u, &rtn);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

// Free 16 bytes to alloc_hndl.
rtn = bp_mem_free_from(alloc_hndl, p_mem);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 4 – Allocate 16 bytes from a specific allocator.

6.3.5 Query the Remaining Memory
It is possible, for some allocators, to query the remaining amount of memory by calling . If supported
the remaining amount of memory will be returned. Otherwise RTNC_NOT_SUPPORTED is returned as the
status code and the p_rem_sz argument is set to 0. Note that depending on the alignment requirement
of future allocations and internal fragmentation of the free memory, it may not be possible to use all of
the remaining memory.

#include <mem/bp_mem.h>

int rtn;

// Variable that will receive the remaining amount of memory.
size_t rem_sz;

p_mem = bp_mem_rem_sz_get(alloc_hndl, &rem_sz);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 5 – Query the remaining memory.

6.4 Conclusion
The memory management module is extensively used internally by the BASEplatform but is also
available for the convenience of the application. The ability to select from multiple allocation drivers
allows the application developer to fine-tune the behaviour of memory allocation and, critically, decide
if freeing memory is allowed within the application. Readers interested in individual memory allocator
drivers should consult the API Reference Manual for additional details.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

7
Error Handling

7.1 Introduction
Handling of statuses and errors returned by lower-level API functions is indispensable for a solid and
reliable application. To simplify development and improve robustness the BASEplatform follows a
consistent and simple error handling scheme. This scheme consists of two important aspects. The first
being how errors are propagated through the call stack and reported to the application. The second is
the assertion checks present throughout the code and the action taken upon triggering an assertion
failure. To maximize the versatility of the BASEplatform error handling the application can control the
presence of assertion check within the BASEplatform and customize the action taken when a failure is
detected. The chapter also goes over recommended practices when it comes to handling errors
returned by the BASEplatform API.

7.2 Overview
Within the BASEplatform the result of an API call is most often than not returned to the caller as the
function’s return value. This return value can inform the application of the status of the operation be it a
success, failure or a specific status such as a value not found or a timeout. Those return values are
called returned code. Internally, when an API receives a return code that cannot be handled at the
current level the usual action is to pass it up the call stack up to the application. At that point the
application can take appropriate action.

The BASEplatform uses a large quantity of configurable assertion checks to catch invalid arguments,
data corruption and internal errors. Those assertion checks are designed to be usable in both debugging
and production. They can, however, be disabled by the application developer to improve performance
and reduce code size. When the checks are enabled, it is also possible to configure the action taken
when encountering an assertion failure. By default the BASEplatform will return an RTNC_FATAL return
code when reaching an assertion failure. Through a dedicated configuration, the application is able to
override this behaviour and perform a different action such as breaking to the debugger when
developing or triggering a CPU reset or a transition to a safe state when an assertion failure is detected.

The BASEplatform attempts to prevent hiding errors by returning them up the call stack as much as
possible. At the same time, it tries to minimize error renaming or translation when necessary to prevent

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 Error Handling 29

obscuring the initial cause of an error. Those last facts combined with the configurable asserts enable an
application to control how errors are handled depending on the application’s requirements. For example,
one application may prefer to perform minimal error handling and management by disabling assertion
checks to maximize performance and minimize code space. Another safety critical application may
prefer to trigger a watchdog reset upon detection of a unrecoverable error to prevent further safety
degradation.

7.3 Return Codes
Save for a few exceptions as well as functions that cannot fail, all of the BASEplatform API functions
return a status code as the function’s return value. This return code is under the form of a plain C int.
A simple example of this is shown in Listing 6 where the return value of bp_timer_init() is checked
to make sure that the initialization of the timer module was successful.

#include <util/bp_rtnc.h>
#include <timer/bp_timer.h>

// Variable to hold the return code.
int rtn;

rtn = bp_timer_init();
if (rtn != RTNC_SUCCESS) { /* Handle unexpected error here */ }

Listing 6 – Simple check of a function’s return code.

All of the BASEplatform return codes are prefixed with RTNC_ followed by a descriptive name for the
status or error. The return codes are globally defined in the util/bp_rtnc.h header file. Listing 7
displays a portion of the bp_rtnc.h header file with some of the most common return code.

#define RTNC_SUCCESS (0) /* Function completed successfully. */
#define RTNC_FATAL (-1) /* Fatal error occurred. */
#define RTNC_NO_RESOURCE (-2) /* Resource allocation failure. */
#define RTNC_IO_ERR (-4) /* Transfer or peripheral operation failed. */
#define RTNC_TIMEOUT (-5) /* Function timed out. */
#define RTNC_NOT_SUPPORTED (-6) /* Operation not supported. */
#define RTNC_NOT_FOUND (-7) /* Requested object not found. */
#define RTNC_ALREADY_EXIST (-8) /* Object already created or allocated. */
#define RTNC_ABORT (-9) /* Operation aborted by software. */
#define RTNC_INVALID_OP (-10) /* Invalid operation. */

Listing 7 – Sample of error codes.

The application is advised not to rely on the exact numerical value of each error code as they may
change in the future. In other words, the preprocessor definitions should always be used when
comparing return codes. It is, however, guaranteed that RTNC_SUCCESS is 0 and that all other codes
have negative value.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 Error Handling 30

7.4 Fatal Errors
Errors can be classified either as fatal or nonfatal. An example of non-fatal error would be a UART
interface timing out waiting for data to be received. In this case RTNC_TIMEOUT would be returned.
While it may be a problem for the application, the timeout doesn’t signify that anything wrong or
unexpected happen within the BASEplatform or the underlying driver and peripheral. A fatal error,
however, most often reported using the RTNC_FATAL return code means that an unrecoverable error
was encountered. Most often than not the error is the result of a failed assertion check, which could
mean an invalid argument, a corrupted internal structure or an unexpected condition. What to do when
faced with a fatal error is application specific but should be treated like any other unrecoverable error.
At a minimum when a fatal error is encountered the module or module instance that returned the error
should not be accessed again. Some modules provide a reset functionality which will attempt to return
the module into a known state.

In addition to the RTNC_FATAL return code, any unexpected return code should be treated as a fatal
error. The list of possible return code of each API function is documented in the API reference manual.

7.5 Assertion Checks
Internally the BASEplatform uses a generous quantity of assertion checks to verify function arguments
as well as internal state. Those checks can be enabled or disabled at compile time using configuration
defines in bp_cfg.h. The application can set BP_CFG_ARG_CHECK to 1 to enable argument checking
and BP_CFG_ASSERT_CHECK to 1 to enable other internal assertion checks. Setting either of them to 0
will disable that class of checks thus reducing code size and improving performance. The assertion
checks are designed to be usable both during development and in production.

By default the result of encountering an assertion failure is the immediate return from the function that
triggered the error with an RTNC_FATAL error. The application, however, can override this behaviour by
defining BP_ASSERT_ACTION() in bp_cfg.h. A common configuration to use would be to call
BP_ARCH_PANIC which usually disables interrupts and either go into an infinite loop or break to the
debugger if possible. By breaking automatically when debugging, application developers can see quickly
and painlessly the cause and location of an error, especially those caused by invalid arguments. Listing 7
shows an example of configuration useful when debugging.

// Enable argument checking.
#define BP_CFG_ARG_CHECK 1

// Enable internal error checking.
#define BP_CFG_ASSERT_CHECK 1

// Break to debugger or in a loop on failures.
#define BP_ASSERT_ACTION() BP_ARCH_PANIC()

Listing 8 – Example of assert configuration for debugging.

7.6 Recommended Method for Handling Return Codes
When checking and handling return codes, the recommended method is to first check for
RTNC_SUCCESS then handle any expected return codes such as RTNC_TIMEOUT. Afterward all other

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 7 Error Handling 31

return codes that are not expected or handled by the application should be considered fatal as shown in
Listing 9. In the example the application calls the UART receive function bp_uart_rx() with a
timeout value of 100 milliseconds. If the 8 bytes requested are received before the 100 millisecond
timeout is reached then the function will return RTNC_SUCCESS. If, however, the 8 bytes are not received
in time then the function will return RTNC_TIMEOUT which can be handled by the application. In a third
scenario, let’s say that the buf variable is NULL, then the function will return RTNC_FATAL to error.

#include <util/bp_rtnc.h>
#include <uart/bp_uart.h>

// Variable to hold the return code.
int rtn;

rtn = bp_uart_rx(hndl, buf, 8u, &rx_len, 100u);
if(rtn != RTNC_SUCCESS) {

if(rtn == RTNC_TIMEOUT) {
/* Handle timeout condition. */

} else {
/* Handle fatal error. */

}
}

Listing 9 – Example of handling return codes.

7.7 Conclusion
The BASEplatform error handling methodology is both designed to be simple and robust. The consistent
way of returning status information to the application reduces programming errors and improve
development speed. In addition using configurable asserts and assert action, it is possible for the
application designer to tweak the behaviour of the BASEplatform in the face of unexpected and
unrecoverable errors. Readers are encouraged to look the API Reference Manual for the API functions
that are used within their application to see the list of return codes that can be returned by those
functions as well as the condition that cause those codes to be returned.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

8
Configuration

8.1 Introduction
One of the design considerations of the BASEplatform is to limit the number of compile-time
configurations. Most of the configurability of the BASEplatform comes from its modularity and flexibility.
Modules and peripheral drivers primarily use definition structures that can be populated at runtime for
setup instead of hard-coded compile time values. Additional information about those definition
structures can be found in Chapter 4. However, it is hard to design a cross-platform SDK without some
global compile time configurations. This chapter will go over those compile time configurations.

8.2 Overview
The BASEplatform uses, at a minimum, three configuration header files. The first one, bp_cfg.h
contains various user-defined preprocessor macros, also known as configuration defines that can affect
various aspects of the BASEplatform. The second file, bp_arch_def_cfg.h, should contain a single
include directive to include the architecture port master header file specific to the current CPU
architecture and compiler in use. The third file, bp_board_def_cfg.h, should also contain a single
include directive for the master board definition file. The architecture port and board definition header
files are used by the BASEplatform to know at compile-time various important aspects of the current
platform.

8.2.1 Rationale
The design of the BASEplatform configuration files is aimed at improving performance and the simplicity
of using the BASEplatform. They are also designed to increase the flexibility of the SDK as well as
facilitating the usage of the SDK as a library. Finally, they are designed to ease the setup of a build
project whether inside an IDE or built from a Makefile.

The aims described in the last paragraphs translate into three concrete design goals of the
BASEplatform described below.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 8 Configuration 33

Improve performance. Using preprocessor definitions instead of run-time variables can help improve
performance in some areas. For example, having a run-time configuration to enable or disable assertion
checking would increase the code size considerably while adding overhead to each API calls.

Reduce the number of include paths. The BASEplatform file and directory structure is designed to
reduce the number of include paths that need to be defined by the user when building their project. By
including the board definition file as well as the architecture port file from the configuration files it
becomes unnecessary to add their path to each IDE or Makefile project.

Prevent ambiguous file names and simplify package composition. Most RTOS or third-party libraries
will use static names for port header files, which means that in a release package multiple files could end
up having the same name. This becomes confusing to browse and also can confuse some build systems.
Other than in rare exceptions, the BASEplatform attempts to never create files of the same name. This
also means that multiple libraries for multiple targets can be built easily from a single cross-platform
release package.

8.3 Configuration Files
At a minimum the BASEplatform requires three different configuration files to be sourced by the
application. A suitable example of each one is supplied with the demonstration and development
project distributed with the BASEplatform release package. Some platforms or third-party software
integrated within the BASEplatform may require additional configuration files.

8.3.1 bp_cfg.h
bp_cfg.h is the primary configuration file and contains various user-defined preprocessor macros.
Some of them, listed below, are mandatory for all platforms while other platform-specific configuration
values may be needed or added by the developer.

BP_CFG_ARG_CHECK — Can be set to 1 to enable argument checking. If an invalid argument is
detected by an API function RTNC_FATAL will be returned. See Chapter 7 for additional details on error
handling.

BP_CFG_ASSERT_CHECK — Can be set to 1 to enable internal assertion checking. If possible
RTNC_FATAL will be returned by an API function if an internal error is detected. See Chapter 7 for
additional details on error handling.

BP_ASSERT_ACTION() — If set this macro is invoked on an assertion failure including invalid arguments
and internal errors. See Chapter 7 for additional details on error handling.

BP_CFG_SMP — Must be set to 1 when running in an SMP configuration. This will change the
behaviour of critical sections and spinlocks to be compatible with SMP platforms. This will also affect
some peripheral drivers which may use additional synchronization constructs within their interrupt
handler to prevent race conditions on SMP platforms.

BP_CFG_CORE_CNT — Number of cores when running in an SMP configuration otherwise must be set
to 1. Usually this configuration would be set to a value higher than one when BP_CFG_SMP is set to 1.
However for testing and development purpose it is possible to set the core count to 1 but with SMP
enabled, this can be used to debug SMP-related issues while keeping the SMP compatible behaviour of
locks and interrupts.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 8 Configuration 34

8.3.2 bp_arch_def_cfg.h
bp_arch_def_cfg.h is used to include the architecture port master header file. It should contain a
single include directive for the architecture port file for the desired platform and compiler. Listing 10
shows an example of configuration file for the Cortex-M and GCC compiler. Usually the root of the
BASEplatform source is part of the include path, as such it is recommended to include the architecture
port file as shown in the example, starting from the arch module directory.

// bp_arch_def_cfg.h

#include <arch/port/arm-v7ar/gcc/bp_arm-v7ar_gcc_arch.h>

Listing 10 – Example of bp_arch_def_cfg.h for the Cortex-M GCC port.

8.3.3 bp_board_def_cfg.h
bp_board_def_cfg.h is used to include the board definition master header file. Like
bp_arch_def_cfg.h it should contain a single include directive to for the current board definition
header file. Listing 11 shows an example of board configuration file for the STM32F4 Discovery
development board.

// bp_board_def_cfg.h

#include <board/stmicro/stm32f4discovery/bp_stm32f4discovery_board_def.h>

Listing 11 – Example of bp_board_def_cfg.h for the STM32F4 Discovery.

8.4 Conclusion
This is it for the compile-time configuration of the BASEplatform. As stated in the introduction, every
attempt has been made to reduce the compile time configuration to a minimum. Readers should note
that a complete and functional set of configuration files are provided with each release package. As
such, developers should not have to play with the configuration too often with the exception maybe of
the assertion checks configuration which are described in more details in Chapter 7.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

9
Time and Timer

9.1 Introduction
The time module handles the BASEplatform primary timebase to provide time measurement and time
delay services. Its companion module, the timer module offers interrupt based software timers. Both
modules, when paired with a high-resolution timebase, enables low-jitter sub-millisecond time
measurements and delays. This chapter will go over the recommended specifications of the primary
timebase, initialization of the time and timer modules as well as basic usage of both with code
examples.

9.2 Overview
The time and timer modules are used both internally by the BASEplatform and the application.
Internally, time delays and timers are used for the management of timeout and handle periodic events.
The drivers also make use of sub-millisecond delays from time to time when managing peripherals with
strict timing constraints.

9.2.1 The Time Module
As mentioned earlier in the introduction the time module handles the primary timebase. Using that
timebase the time module can derive high-resolution time measurement and delays. The
implementation of the time module is designed to minimize jitter and prevent drift when used with an
appropriate hardware timer. In addition, the time module is based on a 64-bit time and as such can be
considered to never wraparound. Both 32 and 64 bit versions of the time measurement and delay API
are provided for convenience.

9.2.2 The Timer Module
The timer module derives its timebase from the time module to provide the application with interrupt
based software timers. The resolution of the timers is the same as the primary timebase with the
possibility of microsecond resolution timers if the selected timebase can handle it. Like the time
module, the software timers are based on a 64-bit counter. Moreover the timer implementation on most

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 9 Time and Timer 36

platforms that supports it doesn’t use a periodic tick which reduces CPU usage and improve power
efficiency by minimizing the number of wake-up events in a low power design.

9.3 Primary Timebase
The quality of the services provided by the time and timer modules depends directly on the hardware
timer used as the primary timebase. While there are no strict requirements, it is recommended to use a
sub-millisecond resolution free-running timer with compare-and-match capabilities. Moreover, to
improve performance a 64-bit timer is recommended if available. The use of a free-running timer with
compare-and-match helps prevent drift as the timer won’t need to be reset or reconfigured once stared.
The use of a free-running timer with comparing and match can also improve performance slightly.

9.4 Initialization
Initialization of the time and timer modules should be performed early in the application lifetime.
Also, it is necessary to initialize the time module before the timer module. Initialization can be
performed by calling bp_time_init() and bp_timer_init() as shown in Listing 12. Neither
function takes any arguments.

#include <time/bp_time.h>
#include <timer/bp_timer.h>

int rtn;

// Initializes the time module.
rtn = bp_time_init();
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

// Initializes the timer module.
rtn = bp_timer_init();
if (rtn != RTNC_SUCCESS) { /* Error handling */ }

Listing 12 – Initialization of the Time and Timer modules.

9.5 Time Module Usage
The time module API can be divided in three categories. The first category deals with time
measurement and allows querying the value of the primary timebase in a variety of units including
retrieving the raw timer value. The second category includes all the time delay functions. The time delay
functions are available in three flavours with the option of spin wait, interrupt based and hybrid delays.
Finally, the last category contains functions to convert a time value between the raw timebase unit and
various other units.

9.5.1 Querying the Time
Time measurement can be performed by querying the current value of the primary timebase. For
example bp_time_get_ms() can be called to get the current value in milliseconds. An example of

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 9 Time and Timer 37

such a call is depicted in Listing 13. Note that a large portion of the time module API doesn’t return a
status code and as such will use the return value for other purposes, such as reporting the current time
in this example. It is assumed that functions that don’t return an error cannot fail.

#include <time/bp_time.h>

// Variable to hold the queried time.
uint64_t time_ms;

// Query the current value of the primary timebase in milliseconds.
time_ms = bp_time_get_ms();

Listing 13 – Querying the current time in ms.

It is also quite possible to query the raw timebase value by using bp_time_get() instead of
bp_time_get_ms(). This is useful to get the highest possible resolution when performing time
measurement. An example is presented in Listing 14.

#include <time/bp_time.h>

// Variable to hold the queried time.
uint64_t time;

// Query the raw value of the primary timebase.
time = bp_time_get();

Listing 14 – Querying the current time in raw units.

Both API functions used in the previous two examples return a 64-bit value. If a 32-bit value is desired,
instead one could use a cast to discard the upper 32 bits of the result. However all of the timer query
API that returns a 64-bit value have a 32-bit counterpart for convenience, such as in Listing 15. On top
of being convenient, using the 32-bit version may, on some platform, offers a slight performance
advantage.

#include <time/bp_time.h>

// Variable to hold the queried time.
uint32_t time;

// Query the least significant 32 bits of the primary timebase current value.
time = bp_time_get32();

Listing 15 – Querying the current time as a 32-bit value.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 9 Time and Timer 38

9.5.2 Getting the Timebase Frequency
When using the raw timebase values as shown in the previous section, it can be useful to query the
frequency of that timebase. It can be done easily using bp_time_freq_get() as shown in . Note that
bp_time_freq_get() always return a 64-bit value.

#include <time/bp_time.h>

// Variable to hold the queried frequency.
uint64_t freq;

// Get the frequency of the primary timebase.
freq = bp_time_freq_get();

Listing 16 – Querying primary timebase frequency.

9.5.3 Delays
An application may sometimes wish to delay execution in order to control the timing of various
operations. This can be achieved using the various delay API within the time module. Listing 17 shows
the simplest way of performing a delay by calling bp_time_sleep_ms(). All of the delay functions of
the BASEplatform are guaranteed to have waited for the entire length of time specified.

bp_time_sleep() and bp_time_sleep_ms() can perform a busy-wait or an interrupt based delay
depending on the length of the delay specified. For short delays it is often more efficient to wait in a
loop compared to the time it takes to setup a wake up from an interrupt and perform a full context
switch. For longer delays, those functions will wait on an interrupt allowing other tasks to run in a
multithreaded system.

#include <time/bp_time.h>

// Sleep for 100 milliseconds.
bp_time_sleep_ms(100u);

Listing 17 – Simple time delay in milliseconds.

Like the time measurement API, it is also possible to specify delays in the raw timebase unit, for
example by calling bp_time_sleep() instead of bp_time_sleep_ms(). Application developers
should be careful when using this feature as the code is less portable if the firmware is migrated to a
different platform with a different timebase frequency. Listing 18 shows an example of specifying a
delay in the raw timebase unit instead of milliseconds. Again bp_time_freq_get() can be called to
get the timebse frequency.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 9 Time and Timer 39

#include <time/bp_time.h>

// Sleep for 1200 count of the raw timebase.
bp_time_sleep(1200u);

Listing 18 – Time delay in the raw timebase unit.

In a similar fashion as the time measurement API some time delay functions are available in both 32 and
64 bit variants. For example Listing 19 contains the 32-bit version of the previous example.

#include <time/bp_time.h>

// Sleep for 1200 count of the raw timebase.
bp_time_sleep32(1200u);

Listing 19 – 32-bit time delay.

9.5.4 Busy-Wait and Interrupt Based Delays
Sometimes it is preferable to use one kind of delay over another. For example, when performing a short
delay within an interrupt to comply with a peripheral timing restrictions it is important to use a
busy-wait loop. In that situation it is indicated to use bp_time_sleep_busy() or
bp_time_sleep_busy_ms() over the plain version to ensure that a busy-wait loop will be used such
as in Listing 20.

#include <time/bp_time.h>

// Sleep for 100 milliseconds in a loop.
bp_time_sleep_busy_ms(100u);

Listing 20 – Time delay using a busy-wait loop.

In contrast with the last example, one may prefer to force a context switch or at least an interrupt to
happen when delaying, even for a short time. In a multitasking environment, this is similar to a yield.
This can be achieved using bp_time_sleep_yield() or bp_time_sleep_yield_ms() like
Listing 21. When running with a kernel, this is guaranteed to force a context switch, while in a
bare-metal environment it will cause an interrupt to be generated.

#include <time/bp_time.h>

// Sleep for 100 milliseconds.
bp_time_sleep_yield_ms(100u);

Listing 21 – Time delay using a yielding or interrupt based delay.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 9 Time and Timer 40

9.6 Timer Module Usage
When an application desires to perform an action at some point in time in the future, delays are not
always the best option. For one in a multithreaded environment, it monopolizes an entire thread and in
a bare-metal environment it prevents further code execution until the delay has passed or requires
tricky timing through the super loop. In those cases, software timers are a convenient low-overhead
alternative.

In the BASEplatform, software timers are always interrupt based and usually tickless, meaning that timer
processing only happens when a timer expires. On expiry, a user-specified callback is called by the timer
processing interrupt. Within this callback the application can perform any desired action and also
optionally restart the timer to create a periodic timer. To use a timer an application must first create it,
then start it configuring the timer parameters. Later on, an application can either restart a timer, stop it
or finally destroy it when it’s no longer needed. When destroyed, the memory used by the timer is
either freed, if that is supported by the default allocator (See Chapter 6), or returned to a pool of
unused timers, ready to be reused the next time a timer is created.

9.6.1 Creating and Destroying a Timer
The first step in order to use a software timer is to create it, using bp_timer_create(). It can be
destroyed later if no longer needed with bp_timer_destroy(). Listing 22 and Listing 23 show
examples of creating and destroying a timer.

#include <timer/bp_timer.h>

int rtn;

// Variable to receive the created timer's handle.
bp_timer_hndl_t hndl;

// Create a new timer storing the timer handle in 'hndl'.
rtn = bp_timer_create(&hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 22 – Creating a timer.

#include <timer/bp_timer.h>

int rtn;

// Destroy a previously created timer.
rtn = bp_timer_destroy(hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 23 – Destroying a timer.

9.6.2 Timer Callback
Every timer requires a callback before starting it. Listing 24 contains a simple timer callback function.
The timer callback is passed the timer handle and a user-provided pointer as arguments. The timer

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 9 Time and Timer 41

handle can be used to modify the timer from within the callback, for example by changing the period.
The second argument is the same one passed to the timer start function for use by the application.

The return value of the callback function can be used to instruct the timer management interrupt of the
action to perform on that timer. The possible actions are BP_TIMER_STOP to stop the timer and thus
deactivate it, BP_TIMER_RESTART to restart the timer using new settings, or BP_TIMER_PERIODIC to
restart the timer from the last time it expired without changing the period.

#include <timer/bp_timer.h>

bp_timer_action_t timer_callback(bp_timer_hndl_t hndl, void *p_arg) {

// Perform callback actions here.

// Return the stop instruction to the timer handling routine.
return BP_TIMER_STOP;

}

Listing 24 – Simple timer callback.

9.6.3 Starting a Timer
Starting a timer can be done using bp_timer_start_ms() or one of its variants. As displayed in
Listing 25, bp_timer_start_ms() takes as argument the timer handle, the timer period as well as the
callback function and a user-specified pointer which will be passed unmodified to the callback when the
timer expires. If the callback of Listing 24 is used, this will be a one-shot timer.

#include <timer/bp_timer.h>

int rtn;

// Start a timer with a period of 250 milliseconds.
rtn = bp_timer_start_ms(hndl, 250u, timer_callback, NULL);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 25 – Starting a timer.

9.6.4 Periodic Timer
To turn the previous example into a periodic timer one only needs to change the callback to return
BP_TIMER_PERIODIC as in Listing 26. Starting the timer is done in the exact same way as shown in
Listing 27. When returning BP_TIMER_PERIODIC from the callback the timer handling interrupt will
reschedule the timer using the initial period specified. Moreover when rescheduling the timer the target
expiry time will be calculated from the time the timer last expired not the current time. This way, the
timer will not accumulate any drift due to the latency between the timer expiring and the time it’s
processed and put back into the active timer list.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 9 Time and Timer 42

#include <timer/bp_timer.h>

bp_timer_action_t perioric_timer_callback(bp_timer_hndl_t hndl, void *p_arg) {

// Perform callback actions here.

// Return the restart a periodic timer instruction to the timer handling routine.
return BP_TIMER_PERIODIC;

}

Listing 26 – Periodic timer callback.

#include <timer/bp_timer.h>

int rtn;

// Start a timer with a period of 250 milliseconds.
rtn = bp_timer_start_ms(hndl, 250u, perioric_timer_callback, NULL);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 27 – Periodic timer start

9.6.5 Restarting a Timer
An expired or stopped timer can be restarted by calling bp_timer_restart_ms() or one of its
variants. When restarting a timer, the new timer target is set from the last time the timer was set to
expire, again preventing any drift. If instead the application wants to restart a timer from the current
time bp_timer_start() can be used to restart an expired timer instead. Listing 28 shows an example
of restarting a timer. When restarting a timer, the original callback will be used.

#include <timer/bp_timer.h>

int rtn;

// Restarts a timer with a period of 500 milliseconds.
rtn = bp_timer_restart_ms(hndl, 500u, NULL);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 28 – Restarting a timer

It is also possible to restart a timer from a timer’s callback function as in Listing 29. In this case,
bp_timer_restart_ms() is called from the callback to set the new period. When doing so,
BP_TIMER_RESTART must be returned to inform the timer handling routine that the timer was
restarted.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 9 Time and Timer 43

#include <timer/bp_timer.h>

bp_timer_action_t perioric_timer_callback(bp_timer_hndl_t hndl, void *p_arg) {
int rtn;

// Restart the timer while changing the period.
rtn = bp_timer_restart_ms(hndl, 500u, NULL);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Return the restart instruction to the timer handling routine.
return BP_TIMER_RESTART;

}

Listing 29 – Restarting a timer from the callback function.

9.6.6 Stopping a Timer
The application can, at any time, stop a running timer using the API function bp_timer_stop(). An
example of such a call is shown in Listing 30. If the timer is stopped successfully, the timer’s callback
won’t be called. However if the timer has already expired then bp_timer_stop() will have no effect.

#include <timer/bp_timer.h>

int rtn;

// Stop the timer.
rtn = bp_timer_stop(hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 30 – Stopping a timer

9.7 Conclusion
The time and timer provides the application with an important set of services to measure and control
the timing of an application’s execution. Readers are encouraged to consult the API Reference Manual
for both modules to get all the details on time and timer management. Also the reference manual
contains additional convenience API to handle times in various units.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

10
Interrupt Management

10.1 Introduction
The interrupt management module or simply the interrupt module abstracts interrupt management
and handling for the BASEplatform and the application. The services offered by the interrupt module
includes registering interrupt service routines (ISR), enabling and disabling interrupt sources as well as
controlling interrupt priority and type.

10.2 A Word on Platform Interrupt Support
This chapter documents the generic interrupt management API of the BASEplatform. Due to the wide
variety of MCU and SoC many platforms will inevitably have some idiosyncrasies not covered by the
generic API. Consequently, it is likely that the interrupt implementation on a specific platform deviates
from the information contained in this section. While most deviations only affects the initialization, it is
possible that some platforms require a slightly modified API or a special signature for interrupt service
routines. Readers are advised to read the Platform Reference Manual for their SoC for further
information.

10.3 Initialization
Very early in an application’s lifetime the interrupt module should be initialized by calling
bp_int_init(). An example of such a call is shown in Listing 31. Additional initialization and
configuration steps may be required on certain platforms or when running with an RTOS. Those steps, if
any, are documented in the Platform Reference Manual for each SoC or MCU. After initializing the
interrupt module, the interrupts should be globally enabled by calling bp_int_en(). Note that the
effect of bp_int_en() is platform specific and does more than just enabling the global interrupt line at
the CPU level. Moreover, in order to disable and enable interrupts globally at runtime one should call
BP_ARCH_INT_DIS and BP_ARCH_INT_EN instead of bp_int_dis(). bp_int_dis() is designed to
disable the interrupt controller which may have unintended side effects and should be reserved for
testing and debugging only.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 10 Interrupt Management 45

#include <int/bp_int.h>

int rtn;

// Initialize the timer module.
rtn = bp_int_init().
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Enable interrupt processing.
rtn = bp_int_en().
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 31 – Initialization of the interrupt module.

10.4 Usage
The interrupt module is mostly used by drivers to register and control interrupts. Before an interrupt
request can be serviced first, an ISR must be registered to that interrupt request then that it must be
enabled. Optionally, the application may wish to alter the priority of the interrupt. Additionally on
platforms that support it, it is possible to alter the type and polarity of an interrupt.

10.4.1 Registering an Interrupt Service Routine
An interrupt service routine within the BASEplatform looks like the function depicted in Listing 32. The
interrupt handler will pass to the ISR three arguments, the first being a user-specified pointer, the
second is the ID of the current interrupt. Lastly, the third argument is only used on SMP platforms and
contains the source of software triggered interrupt for inter-core communication, in all other cases the
value source is undefined.

#include <int/bp_int.h>

void isr_func(void *p_int_arg, int interrupt_id, uint32_t source)
{

// ISR body.
}

Listing 32 – Example of interrupt service routine.

To register an ISR the driver or the application must call bp_int_reg() as shown in Listing 33. The
first argument is the interrupt ID to register. Usually each SoC is provided a predefined list of interrupt
names listed in a C enum variable. These are documented in the Platform Reference Manual for the SoC
or MCU in question. It is usually recommended to use the enumeration constant instead of a
hard-coded number. The second argument to bp_int_reg() is the ISR function to register, and the
third argument is a user-defined pointer that will be passed to the ISR. It is possible to register an
interrupt on an enabled interrupt line to replace a previously registered handler.

It’s important to note that the method of mapping numerical interrupt id to physical interrupt lines is
platform specific. This is another reason that the application should use the platform specific
enumeration and must be careful with manipulating the interrupt id directly.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 10 Interrupt Management 46

#include <int/bp_int.h>

int rtn

// Register ISR 'isr_func' to interrupt 10.
rtn = bp_int_reg(10u, isr_func, NULL);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 33 – Example of registering an ISR.

10.4.2 Enabling an Interrupt
After registering an interrupt that interrupt must be enabled before it can be used. Enabling an interrupt
can be performed using bp_int_src_en(), passing the interrupt id to bp_int_src_en() like in
Listing 34. Note that enabling an interrupt without a registered interrupt handler could potentially cause
a CPU fault if that interrupt fires.

#include <int/bp_int.h>

int rtn

// Enabling interrupt 10.
rtn = bp_int_src_en(10u);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 34 – Example of enabling an ISR.

10.4.3 Disabling an Interrupt
An interrupt can also be disabled with bp_int_src_dis() as in Listing 35. Disabling an already
disabled interrupt will have no effect.

#include <int/bp_int.h>

int rtn

// Disabling interrupt 10;
rtn = bp_int_src_dis(10u);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 35 – Example of disabling an ISR.

10.4.4 Configuring an Interrupt Priority and Type
On platforms that support multiple configurable interrupt priorities bp_int_prio_get() can be used
to set the priority of an interrupt. Note that the numerical value of a priority is platform specific. Which

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 10 Interrupt Management 47

means that the range of possible values as well as which end of the range corresponds to a higher
priority can change from platform to platform.

#include <int/bp_int.h>

int rtn

// Set the priority of interrupt 10 to priority 1.
rtn = bp_int_prio_set(10u, 1u);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 36 – Example of configuring an interrupt priority.

The type of an interrupt can also be configured. The supported types may be fixed or limited but often
an interrupt controller can allow changing an interrupt line from being edge sensitive to being level
sensitive. Other controllers may also allow configuring the polarity of the interrupt trigger. If that is
possible one can use the bp_int_type_set() to configure an interrupt, see Listing 37 for an example.

#include <int/bp_int.h>

int rtn

// Set interrupt 10 to trigger on a rising edge of the interrupt line..
rtn = bp_int_type_set(10u, BP_INT_TYPE_EDGE_RISING);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 37 – Example of configuring the sensitivity and polarity of an interrupt.

10.5 Conclusion
This chapter is only an introduction to the generic interrupt handling API of the BASEplatform. Readers
are encouraged to read the BASEplatform API Reference Manual for the complete list of interrupt
management functions and how they work in detail. In addition, it is strongly recommended to take a
look at the Platform Reference Manual for important platform specific details of each individual SoC and
MCU.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

11
Critical Section and Spin Lock

11.1 Introduction
The Critical Section and Spinlock module is abbreviated to slock in the documentation and the source
code. The slock module provides uniprocessor and Symetric Multi Processing (SMP) compatible critical
sections and spinlocks. The implementations and API are both compatible with bare-metal, uniprocessor
RTOS and SMP RTOS. The slock module also features a unified spinlock API that can be used without
a performance penalty across all types of systems, improving the portability of an application between
uniprocessor and SMP systems.

11.2 What’s a Critical Section?
Within the BASEplatform on a uni-processor system, a critical section is defined as a section of code
where interrupts are disabled thus preventing an interrupt or a kernel context switch from happening. In
effect the section is now guaranteed to be protected against concurrent execution since nothing is
allowed to interrupt that section of code from executing. Critical sections are usually used to protect
access to shared resources therefore preventing race conditions from happening.

Compared to mutexes and semaphores critical sections can be used from ISR and to protect against
concurrent access from an ISR. This makes then used primarily when dealing with resources shared
between the application and ISR. Critical sections also have a lower overhead than a mutex or a
semaphore making them ideal for short sections of protected code. They are often used when simply
updating or reading a shared variable or writing to a peripheral register.

Under an SMP system critical sections also protect against concurrent executions of other critical
sections that may run on other CPU cores. Critical sections are not usually recommended in an SMP
environment as they can have a considerable negative impact on performance. Spinlocks are
recommended which are discussed in the next section.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 11 Critical Section and Spin Lock 49

11.3 What’s a spinlock?
A spinlock in the BASEplatform is a form of mutex where a thread wanting to acquire a spinlock simply
waits (”spin”) for the lock to be free. The lack of a context switch means that spinlock can be used both
to protect against concurrent access from multiple threads but also from interrupts. While the lock is
held either by a thread or an interrupt the interrupts are disabled preventing the section of code
protected by the spinlock to be interrupted.

Spinlocks are only useful under an SMP system. In the BASEplatform the spinlock implementation can
be used on both SMP and uniprocessor systems. The implementation of the spinlock devolves to simple
critical sections on a single-core application. This means that the spinlock API can be used to create
applications compatible between uniprocessor and SMP kernels without a loss of performance due to
the usage of spinlocks on the uniprocessor system.

11.4 Restrictions and Recommended Usage
In the case of both critical sections and spinlocks there are a few restrictions that must be observed.
The first and most important is that a blocking function must never be used within the section of code
protected by a critical section or a spinlock. With assertion checking enabled, the BASEplatform will
attempt to guard against such errors. The second restriction is that the global interrupt flag should not
be manipulated by the application while inside a protected section. Doing so could disable the afforded
protection and desynchronize the state of the interrupt flag expected by the slock API.

When used with an RTOS the slock API can be used to supplement the kernel’s native API. However
care should be taken when mixing the use of the BASEplatform locks and critical sections and the
kernel’s critical sections.

The previous paragraphs detailed important restrictions that must always be observed. There are
additional recommendations related to the usage of the slock API in addition to the restrictions above.
The first recommendation is that the protected section of code should be as short as possible, otherwise
excessively long critical sections could negatively affect interrupt latency and in some cases the
application’s performance as a whole. The second recommendation is to always use the spinlock API
over the critical section API. This last recommendation helps with portability between uniprocessor and
SMP systems. The spinlock API also offers various declination of the lock and unlock functions which
can help improve performance further.

11.5 Critical Section Usage
Application developers are encouraged to use the spinlock API exclusively to improve portability
between uniprocessor and SMP systems. However the critical section API remains available for
developers who prefer simple critical sections. It’s also important to note that critical sections are
compatible with SMP systems but can have a negative impact on performance if they are overly used.

The critical section API is comprised of only two functions bp_critical_section_enter() and .
When entering the critical section bp_critical_section_enter() returns a variable of type to
hold the state of the global interrupt flag before entering the critical section. The same value must be
passed to bp_critical_section_exit() to be restored when exiting the critical section. This
allows the critical sections to be nested. Listing 40 shown an example of a simple critical section.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 11 Critical Section and Spin Lock 50

#include <slock/bp_slock.h>

// Variable to hold the interrupt state before entering the critical section.
bp_irq_flag_t flag;

// Entering the critical section, taking care to save the interrupt flag.
flag = bp_critical_section_enter();

// Protected code goes here.

// Exiting the critical section passing the saved interrupt flag to be restored.
bp_critical_section_exit(flag);

Listing 38 – Simple critical section example.

11.6 Spinlock Usage
Spinlocks are used in a similar fashion to critical sections but require a spinlock object. This spinlock
object can be used much like a mutex to protect shared resources. A simple usage of spinlock is shown
in . The functions used bp_slock_acquire_irq_save() and
bp_slock_release_irq_restore() are equivalent to the critical section API seen before but when
running under an SMP rtos will only block other sections of code protected using the same lock object,
allowing other protected section of code using a different lock to continue. When running under a
uniprocessor system the example of is equivalent to a critical section.

#include <slock/bp_slock.h>

// Variable to hold the interrupt state before entering the protected section.
bp_irq_flag_t flag;

// Spinlock object
slock_t lock;

// Acquiring the spinlock saving the interrupt state.
flag = bp_slock_acquire_irq_save();

// Protected code goes here.

// Releasing the spinlock while restoring the interrupt state.
bp_slock_release_irq_restore(flag);

Listing 39 – Simple critical section example.

11.6.1 Alternative Acquire and Release API
In addition to the acquire and release API shown in the last example, there are two other variants that
can be used in special circumstances. The first one is bp_slock_acquire_irq_dis() and
bp_slock_release_irq_en() as well as bp_slock_acquire() and .

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 11 Critical Section and Spin Lock 51

bp_slock_acquire_irq_dis() and bp_slock_release_irq_en() can be used to
unconditionally enable interrupts when exiting the protected section. This is only recommended when
the use of spinlocks and critical sections are guaranteed not to be nested. bp_slock_acquire() and
bp_slock_release() on the other hand do not manipulate the CPU interrupt disable flag at all. They
should only be used when interrupts are guaranteed to be disabled prior entering the protected section.
Both variants can offer a slight performance advantage over bp_slock_acquire_irq_save() and
bp_slock_release_irq_restore(). Care should be taken to follow the restrictions associated
with those alternative API functions. shows an example of all three types of spinlock API.

#include <slock/bp_slock.h>

// Variable to hold the interrupt state before entering the critical section.
bp_irq_flag_t flag;

// Spinlock object
slock_t lock;

// Default spinlock API. The IRQ flag variable must be passed between the acquire and
// release functions.
flag = bp_slock_acquire_irq_save();

// Protected code goes here.

bp_slock_release_irq_restore(flag);

// Unconditional IRQ enable API.
// Here the IRQ flag variable is unnecessary since the IRQ are always enabled when

exiting
// the protected section. This kind of spinlock section should not be called if
// interrupts are disabled prior to entering the protected section. Also this kind of
// section cannot be nested within other protected sections.
bp_slock_acquire_irq_dis();

// Protected code goes here.

bp_slock_release_irq_en();

// Simple spinlock API to be used only when interrupts are disabled.
bp_slock_acquire();

// Protected code goes here.

bp_slock_release();

Listing 40 – Simple critical section example.

11.7 Conclusion
The slock module API is useful when writing codes that require short and fast sections of code to be
protected against concurrent execution. Application developers are encouraged to take advantage of

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 11 Critical Section and Spin Lock 52

the spinlock features making them efficient and portable between SMP and uniprocessor systems. As
usual readers are encouraged to look up the API Reference Manual of the BASEplatform for additional
details on the slock module.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

12
Cache Management

12.1 Introduction
On platforms with CPU caches, the Cache Management Module or simply the cache module is used to
perform cache maintenance operations. Those cache maintenance operations are primarily used by
drivers performing DMA operations to and from cacheable main memory. When performing DMA
operations from cacheable memory, one must use cache flush and invalidation to ensure cache
coherency. Note that the cache module is concerned only with cache maintenance operations,
primarily targeting the data cache. Initialization and configuration of the CPU caches are usually part of
the startup sequence and would be provided by the appropriate architecture port delivered with the
BASEplatform.

12.2 Overview
Cache maintenance is primarily divided into two operations, cache cleaning or flushing and cache
invalidation. Cache flushing is useful to ensure that data written to the CPU cache but not yet written
to main memory, also known as dirty cache lines, is flushed to memory. A cache flush operation is also
known as a cache clean since it takes dirty data from the cache and writes it to main memory. This
operation is useful when a buffer was written to by the application and must be read by a DMA engine.
For example, when sending a data packet through an Ethernet interface. The cache flush operation is
used to ensure that the Ethernet DMA engine is not reading the old data from main memory.

Cache invalidation removes data from the cache, allowing the CPU to fetch data directly from main
memory. Cache invalidate operations are used to clear potentially stale data from the cache. This is
useful when reading a buffer that was written by a DMA engine. For example, cache invalidation would
be used before looking at a packet received from an Ethernet interface.

12.3 Usage
This section goes over the three main types of operations that can be performed with the cache
module. Either invalidating the entire cache hierarchy, cleaning a range of memory from the cache or
invalidating a range of memory from the cache.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 12 Cache Management 54

12.3.1 Invalidate the Entire Cache
Invalidating the entire data or instruction cache is usually only used during initialization or when waking
up from a low-power sleep. Listing 43 shows an example of calling bp_cache_icache_inv_all()
and bp_cache_dcache_inv_all().

#include <cache/bp_cache.h>

// Invalidate the instruction cache.
bp_cache_icache_inv_all();

// Invalidate the data cache.
bp_cache_dcache_inv_all();

Listing 41 – Invalidating the entire data and instruction caches.

12.3.2 Cache Clean
Once data has been written into a buffer that will be processed by DMA, it is usually necessary to clean
the cache over the range of addresses covering the buffer. The buffer should be aligned to a cache line
and should also be a multiple of a cache line otherwise the flush operation could affect memory outside
the buffer. The cache can be cleaned using bp_cache_dcache_range_clean() as shown in
Listing 42.

#include <cache/bp_cache.h>

// DMA buffer, should be aligned.
uint8_t buffer[256u];

// Buffer is written by the application here.
app_fill_buffer(buffer, 256u);

// Before sending the buffer to a DMA engine it must be cleaned to
// ensure that all the data is written to main memory.
bp_cache_dcache_range_clean(buffer, 256u);

// DMA operation can now be performed here.
dma_run(buffer);

Listing 42 – Cache clean example.

12.3.3 Cache Invalidate
Cache invalidation is used when a DMA engine has written to a buffer in main memory and the
application wants to read from that buffer. The same constraint as cache flushing must be followed, the
buffer must be aligned to a cache line and must be a multiple of a cache line size. Otherwise the cache
invalidate operation could corrupt memory outside the buffer. Listing 43 shows how
bp_cache_dcache_range_inv() can be used to handle a DMA buffer. Note that it is necessary on
most platforms to invalidate twice. The first invalidate is to prevent any dirty data in the cache from

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 12 Cache Management 55

being written to main memory by the cache controller and corrupting the data just written by the DMA
engine. The second invalidate is to make certain that the cache doesn’t contain stale data that would be
returned to the CPU instead of the correct data residing in main memory.

#include <cache/bp_cache.h>

// DMA buffer, should be aligned.
uint8_t buffer[256u];

// Prior to starting the DMA operation the buffer must be invalidated
// to prevent dirty data from corrupting the data in main memory.
bp_cache_dcache_range_inv(buffer, 256u);

// DMA operation can now be performed here.
dma_run(buffer);

// After the DMA operation is completed, but before the application
// can read the data the buffer must be invalidated again. This prevents
// stale data from the cache being returned to the CPU instead of the data
// in main memory.
bp_cache_dcache_range_inv(buffer, 256u);

// Application can read the buffer now.

Listing 43 – Cache invalidate example.

12.3.4 Query the Data Cache Line Size
It can be useful for the application to know the data cache line size, for example to configure buffer
alignment. The data cache line size is, however, not necessarily uniform across the CPU cache hierarchy
and sometimes it is important to know either the smallest or the largest cache line size. The cache
module contains two API to do just that bp_cache_dcache_min_line_get() and
bp_cache_dcache_max_line_get(). Examples of their usage are shown in Listing 44.

#include <cache/bp_cache.h>

// Variable to hold the returned cache line size.
uint32_t line_size;

// Query the smallest cache line size in the data cache hierarchy.
line_size = bp_cache_dcache_min_line_get();

// Query the largest cache line size in the data cache hierarchy.
line_size = bp_cache_dcache_max_line_get();

Listing 44 – Querying the Data Cache Line Size.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 12 Cache Management 56

12.4 Conclusion
This chapter has gone over an overview of cache management operations that can be performed with
the cache module. While a small module the cache module is nonetheless essential on SoC and MCU
using CPU data cache. Developers who must performance cache maintenance operations in their
applications are encouraged to consult the BASEplatform API Reference Manual as well as the Platform
Reference Manual for their platform for additional information on cache management.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

13
Universal Asynchronous Receiver
Transmitter (UART)

13.1 Introduction
The BASEplatform uart module is used to interface with Universal Asynchronous Receiver-Transmitter
(UART) and similar UART-like peripherals. A UART serial link is usually comprised of two independent
transmit and receive paths. Each UART link is asynchronous most often use a simple implement a
clocked version of the protocol or more advanced clock recovery schemes with baud rate detection.
UART and UART-like peripherals are often used as the basis of higher-level protocols and
communication standards such as RS-232, RS-485, IrDA and many others. The BASEplatform doesn’t
assume a specific protocol or target use and can usually work with most variations of the basic UART
protocol.

Considering the wide variety of UART and UART-like peripherals, it would be impossible to design a
high-level and portable API that could leverage the unique features of each and every peripheral. To
alleviate this, drivers are allowed to implement driver-specific functionalities to extend the features of
the core API of the uart module. Details on how to access those features is described later in this
chapter.

13.2 Overview
The uart module features all of the necessary API to interact with a UART peripheral. This includes the
usual lifecycle management functions of a BASEplatform I/O module. Next, the module allows control
over the expected protocol parameters such as the baud rate, number of stop bits and parity. Finally,
the API also contains a blocking transmit and receive API with optional timeout and polling mode option
as well as an asynchronous I/O API.

The blocking API of the uart module allows concurrent access to both the transmit and receive path
without blocking each other. This enables maximum performance and flexibility when transmitting and
receiving at the same time. However, some portion of the API affects both the transmit and receive
channels. An example of such a function is the UART configuration set function, bp_uart_cfg_set().
Those functions require access to both paths and thus using them will block, temporarily any other
transmit or receive calls. Internally this is due to those API trying to lock both channels before
performing any actions that may affect both transmit and receive.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 58

13.3 Lifecycle
The uart module follows the standard lifecycle followed by many of the BASEplatform I/O modules.
The various states and functions to move between those states are schematized in Figure 5.

Created

Configured

Enabled

Disabled

bp_uart_create()

bp_uart_cfg_set()

bp_uart_en()

bp_uart_dis()

bp_uart_destroy()

bp_uart_reset()

Error

bp_uart_reset()

bp_uart_en()

From any state

Figure 5 – State diagram of the uart module’s lifecycle.

To be useful a uart module instance must first be created by calling bp_uart_create(). Once
created the module instance must be configured with bp_uart_cfg_set() and then enabled using
bp_uart_en(). At this point the uart module instance is ready to be used for transmission and
reception. The module instance can then be disabled if desired by calling bp_uart_dis() and finally
destroyed to reclaim any resource associated with the module instance with bp_uart_destroy(). It
is also possible to reset a module instance using bp_uart_reset().

The following sections look at each step in more details.

13.3.1 Create
The first step in the life of a uart module instance is to create it. This can be achieved using the
bp_uart_create() function. After being created the new instance will be left in the created state
after which it should usually be configured and then enabled prior to being used. An example of module
creation is shown in Listing 45.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 59

#include <uart/bp_uart.h>
#include <board/bp_board_def.h>

int rtn;

// Variable that will receive the newly created handle.
bp_uart_hndl_t hndl;

rtn = bp_uart_create(&g_uart_board_def, &hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 45 – Creating a new UART module instance.

bp_uart_create() takes as first argument a pointer to the board definition structure of the UART
peripheral to be associated with the instance. These UART definition structures are part of the board
definition and usually accessible by including the bp_board_def.h header file. See Chapter 4 for
more information on board definitions. The second argument to bp_uart_create() is a pointer to
the handle. If successful, it will be set to the newly created module handle.

Prior to returning, bp_uart_create() will perform all the necessary memory allocation required by
the uart module and driver. This means that once created, a uart instance has all the necessary
memory required for its entire lifetime. See Chapter 6 for additional details on memory allocation.

13.3.2 Configure
A newly create uart instance must be configured at least once prior to being enabled and used for
communication by calling bp_uart_cfg_set(). Afterward it is possible to update the configuration at
runtime by calling bp_uart_cfg_set() again. At any time the current configuration can be queried
by calling bp_uart_cfg_get().

If the uart instance was just created, i.e. it’s in the created state, it will transition to the configured
state upon a successful call to bp_uart_cfg_set(). After being configured for the first time, the
module can then be enabled. If the instance was already configured the configuration is simply updated
and the instance stays in the same state as it was before unless an error occurs.

Listing 46 shows an example of module configuration where the UART peripheral is set to a baud rate
of 115200 with no parity and one stop bit.

#include <uart/bp_uart.h>

int rtn;

// UART configuration structure.
bp_uart_cfg_t cfg;

// Configuration to apply.
cfg.baud_rate = 115200u;
cfg.parity = BP_UART_PARITY_NONE;
cfg.stop_bits = BP_UART_STOP_BITS_1;

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 60

rtn = bp_uart_cfg_set(hndl, &cfg, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 46 – Example of UART configuration.

Apart from the module instance handle and the usual timeout value, bp_uart_cfg_set() takes as an
argument a pointer to a configuration structure of type bp_uart_cfg_t. This configuration structure
contains the baud rate, parity and stop bit configurations to be applied. See the API reference manual for
additional details on the UART configuration structure and the side effects of bp_uart_cfg_set().

13.3.3 Enable
A uart instance in the configured state must be enabled prior to being used, this can be achieved by
calling bp_uart_en(). A disabled instance can also be enabled by the same call. A successful call to
bp_uart_en() will place the module instance in the enabled state and it is then ready for transmission
and reception. If the instance was already enabled, calling bp_uart_en() should have no effect.

The exact side effects of enabling a uart instance is specific to the driver and UART peripheral. In most
cases it will enable the UART peripheral’s clock and bring it out of reset if appropriate.

An example of enabling a uart instance is shown in Listing 47

#include <uart/bp_uart.h>

int rtn;

rtn = bp_uart_en(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 47 – Enabling a UART module instance.

13.3.4 Disable
At runtime it is possible to disable an enabled uart instance with the bp_uart_dis() function. After
being disabled, no other operations should be performed on the instance other than enabling it with
bp_uart_en() or resetting the instance using bp_uart_reset(). Any other operation runs the risk
of accessing a disabled peripheral which could cause a bus fault or hang. If assertion checks are enabled
in the BASEplatform configuration (See Chapter 7) a fatal error may be returned when trying to access a
disabled instance.

The exact side effects of disabling a uart instance is driver and hardware specific. If possible, the
device is placed in a low power disabled state and the peripheral’s clock is disabled. Also it is important
to note that the created and configured state are not equivalent to the disabled state, especially from a
power consumption point of view. Application developers who wish to configure a UART peripheral but
leave it in a low power state should fully create and configure the instance and then call
bp_uart_dis() to disable the module instance and peripheral.

Listing 48 presents an example of disabling a uart module instance.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 61

#include <uart/bp_uart.h>

int rtn;

rtn = bp_uart_dis(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 48 – Disabling a UART module instance.

13.3.5 Destroy
At any point if a uart instance is no longer needed, it can be destroyed using bp_uart_destroy().
Destroying an instance will reclaim any resource assigned to the instance but only if freeing of memory
is permitted by the primary memory allocator. For more details on allocation policy see Chapter 6. Once
destroyed the instance handle becomes invalid and should not be used again.

It is important to first disable a uart instance prior to destroying it otherwise the peripheral will be left
active. Listing 49 contains an example of destroying a uart module instance.

#include <uart/bp_uart.h>

int rtn;

// First disable the instance.
rtn = bp_uart_dis(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

rtn = bp_uart_destroy(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 49 – Destroying a UART module instance.

13.3.6 Reset
A uart instance in any state, other than destroyed, can be reset with the bp_uart_reset() function.
Resetting an instance will bring it back to the created state. If possible, the UART driver will try to
perform a hardware soft reset on the peripheral if this is supported. This soft reset can either be at the
peripheral level if there is a soft reset bit, or using a centralized peripheral reset controller if it is
available on the current SoC.

Reset is the only operation that should be performed on a module instance that encountered an
unexpected error, i.e., returned RTNC_FATAL. A reset could be attempted to return the internal state of
the module and peripheral to a known state.

An example of reset is shown in Listing 50

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 62

#include <uart/bp_uart.h>

int rtn;

rtn = bp_uart_reset(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 50 – Resetting a UART module instance.

13.4 Basic Usage
The most basic and most common usage of the uart module is to transmit and receive bytes through
the UART peripheral interface using a blocking or polling API. This can be achieved using
bp_uart_tx() for transmission and bp_uart_rx() for reception.

13.4.1 Transmission
An example of transmitting through a UART interface is shown in Listing 51. In the example, 8 bytes
from the buffer buf is sent for transmission through the UART interface associated with the handle
hndl. A successful return from bp_uart_tx() means that the bytes passed where either transmitted
or have been queued in the UART peripheral internal FIFO. If there is not enough space in the FIFO to
hold all the bytes to transmit, bp_uart_tx() will block until transmission is complete.

#include <uart/bp_uart.h>

int rtn;

// Buffer to transmit.
uint8_t buf[8] = {0, 1, 2, 3, 4, 5, 6, 7};

rtn = bp_uart_tx(hndl, buf, 8u, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 51 – UART transmission example.

The timeout value passed to bp_uart_tx() specifies that amount of time to wait for the instance to
be free, meaning that it is not accessed from another thread or performing an asynchronous operation.
It is important to realize that if the interface becomes free within the timeout period, bp_uart_tx()
will then block until the specific number of bytes to transfer is either sent or queued. This behaviour is
slightly different on reception as described in the following section.

13.4.2 Reception
Reception is very similar to transmission as shown in Listing 52. When receiving, a buffer of a suitable
size must be passed to bp_uart_rx() along with the maximum number of bytes to receive. Upon
returning from bp_uart_rx() the actual number of bytes received will be stored in the variable
passed as the p_rx_len argument.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 63

#include <uart/bp_uart.h>

int rtn;

// Buffer to store the received bytes.
uint8_t buf[8];

// Variable to receive the number of bytes actually received.
size_t rx_len;

rtn = bp_uart_rx(hndl, buf, 8u, &rx_len, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 52 – UART reception example.

When performing a UART receive operation, the timeout argument serves a dual purpose. It specifies
the timeout for the entire reception operation, including the time waiting for the interface to be
available, as well as the time it takes to receive the data. Passing a timeout value other than means that
bp_uart_rx() will return with an RTNC_TIMEOUT return code if the specified amount of data wasn’t
received in time. RTNC_TIMEOUT will also be returned if the instance didn’t become free within the
timeout period. If a timeout occurs, the variable passed as the p_rx_len argument should be checked
to see how many, if any, bytes were received.

Using a timeout value of 0 means that bp_uart_rx() will work in polling mode. In polling mode,
bp_uart_rx() will return immediately with the data available from the UART FIFO buffer. With a
timeout value of 0 the function will also return immediately if the interface is not free right away. In this
last scenario, the number of bytes received is set to 0.

13.4.3 Flushing the UART FIFOs
UART peripherals often use a receive and transmit FIFOs to hold data temporarily thus improving
performance and reducing CPU usage. This means that, especially on reception, it is possible to have
stale data in the receive FIFO. To synchronize the flux of data the uart module possesses two flush
functions, one for the transmit and the other for the receive path, bp_uart_tx_flush() and
bp_uart_rx_flush(). Of the two, bp_uart_rx_flush() is often the most useful to clear any
stale data in the receive FIFO as is shown in Listing 53.

#include <uart/bp_uart.h>

int rtn;

rtn = bp_uart_rx_flush(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 53 – Flushing the UART receive FIFO.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 64

13.5 Asynchronous I/O
Apart from the blocking API, the uart module also has a non-blocking asynchronous API. The
asynchronous API allows one transmit and one reception operation to be done without blocking. Upon
completion a user-specified callback will be called to report the result. From within the user supplied
callback, it is possible to either finish the transfer or start another asynchronous transfer immediately.
This last feature can be useful when having to continuously transmit or receive to and from a circular
buffer.

Asynchronous reception and transmission are both performed in a similar fashion. The two operations
require the setup of a descriptor structure detailing the transfer to be performed. The structure of type
bp_uart_tf_t as shown in Listing 54 contains information about the buffer to use for reception or
transmission, the length of the transfer to perform as well as a pointer to a user-specified callback
function and context pointer.

struct bp_uart_tf {
void *p_buf; // Memory buffer.
size_t len; // Length of the data.
bp_uart_async_cb_t callback; // Callback function.
void *p_ctxt; // Optional user context pointer.

};

Listing 54 – UART asynchronous transfer structure definition.

To signal the application that a transfer is completed the UART driver will call a user-specified callback
similar to the one in Listing 55. Through the callback arguments, the application is informed of the
status of the completed transfer and the amount of data transferred. A pointer to the transfer
descriptor structure is also passed to the callback. Within that description structure, the application
code can access the original transfer parameters as well as the user context pointer. That user context
pointer can be used to pass information from the application to the callback.

bp_uart_action_t uart_async_callback(int status, size_t tf_len,
bp_uart_tf_t *p_tf) {

// Action to be undertaken by the UART driver interrupt
// handler upon return.
return BP_UART_ACTION_FINISH;

}

Listing 55 – UART asynchronous transfer callback example.

When retuning from the callback, the application should use one of the two possible return values,
namely BP_UART_ACTION_FINISH or BP_UART_ACTION_RESTART. If the callback returns with
BP_UART_ACTION_FINISH, as shown in Listing 55, the transfer completes normally. If, however
BP_UART_ACTION_RESTART is returned, the transfer will be restarted with the information from the
transfer descriptor. The application is allowed to modify the transfer descriptor through the p_tf
argument prior to restarting the transfer.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 65

When performing an asynchronous transfer the transfer can be considered to have been started when
bp_uart_tx_async() or bp_uart_rx_async() returns. It is important to keep in mind that, due to
timing and context switch, the transfer may have already completed before returning.

13.5.1 Asynchronous Transmission
Listing 56 contains an example of asynchronous transmission. The callback function, as explained above
isn’t shown but should be defined somewhere. It’s imperative to keep the buffer valid for the entire
duration of the asynchronous transfer otherwise the transmitted data might be corrupted.

#include <uart/bp_uart.h>

int rtn;

// Buffer to be sent.
uint8_t buf[8] = {0, 1, 2, 3, 4, 5, 6, 7};

// Transfer description structure.
bp_uart_tf_t tf;

// Transfer setup.
tf.p_buf = buf;
tf.len = 8u;
tf.callback = uart_async_callback;
tf.p_ctxt = NULL;

rtn = bp_uart_tx_async(uart_hndl, &tf, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 56 – UART asynchronous transmit example.

13.5.2 Asynchronous Reception
Asynchronous reception is very similar to the previous transmission example as shown in Listing 57. In
fact, the function signatures are the same. Note that the number of bytes read is passed to the callback
function.

#include <uart/bp_uart.h>

int rtn;

// Buffer to hole the received data.
uint8_t buf[8];

// Transfer description structure.
bp_uart_tf_t tf;

// Transfer setup.
tf.p_buf = buf;
tf.len = 8u;

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 66

tf.callback = uart_async_callback;
tf.p_ctxt = NULL;

rtn = bp_uart_rx_async(uart_hndl, &tf, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 57 – UART asynchronous reception example.

13.5.3 Aborting an Asynchronous Transfer
An asynchronous operation can be aborted with the two functions bp_uart_tx_async_abort() and
bp_uart_rx_async_abort() as depicted in . Each abort functions has an optional argument, a
pointer to a variable that will receive the number of bytes transmitted or received at the point of
aborting. Note that it’s possible for the transfer to complete while the abort function is called in which
case the returned data length will be set to 0 and the abort won’t have any effects.

#include <uart/bp_uart.h>

int rtn;

// Variable to receive the number of bytes transferred prior to aborting.
size_t tf_len;

// Aborting a receive operation.
rtn = bp_uart_rx_async_abort(hndl, &tf_len, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

// Aborting a transmit operation.
rtn = bp_uart_tx_async_abort(hndl, &tf_len, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 58 – Aborting an asynchronous transfer.

13.5.4 Waiting for a UART Interface to be Idle
If an application desires to wait for a UART interface to be idle, it can do so with the
bp_uart_tx_idle_wait() and bp_uart_rx_idle_wait() API functions. Those two functions
will wait for any blocking or asynchronous operations to be completed before returning. In addition
bp_uart_tx_idle_wait() will wait for the transmit FIFO to be empty prior to returning. Note that
this last feature doesn’t guarantee that all the data in the FIFO is actually sent since most UART
peripherals do not have a status bit to indicate that the transmit register is empty. En example usage of
bp_uart_tx_idle_wait() is shown in Listing 59

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 67

#include <uart/bp_uart.h>

int rtn;

rtn = bp_uart_tx_idle_wait(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 59 – Waiting for the transmit path to be idle.

13.6 Direct Access to the Driver
The uart module is designed to offer a strong set of features that covers the majority of use cases. At
the same time, the set of features is also selected to ensure that it can be supported by a large majority
of UART peripherals. As such, it is natural that some peripheral specific features cannot be supported by
the top-level portable API of the uart module. To alleviate this, the UART drivers can implement driver
specific functions available to the application to access advanced features of the underlying peripheral.
To use them, however, the application needs to access the driver directly which is explained in this
section.

Apart from accessing driver specific features, using the driver interface directly offers a slight
improvement in performance since the call overhead is reduced. However it also means that access to
the driver is not inherently thread-safe since the top-level uart module is responsible for ensuring
thread safety. Finally, for applications that want to reduce the RAM usage to a minimum, it is possible to
instantiate a UART driver by itself without having an instance of the top-level uart module.
Information on the driver API can be found in the API reference manual.

13.6.1 Retrieving the Driver Handle
The first step in accessing a driver is to retrieve its handle. This can be performed using
bp_uart_drv_hndl_get() as in Listing 60. In the example, if successful, the driver handle will be set
in drv_hndl. That handle can then be used to access the driver API.

#include <uart/bp_uart.h>

int rtn;

// Variable that will receive the driver handle.
bp_uart_drv_hndl_t drv_hndl;

rtn = bp_uart_drv_hndl_get(hndl, &drv_hndl);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 60 – Retrieving the driver handle from a UART module instance.

13.6.2 Locking the UART Module Instance
Most BASEplatform drivers are not inherently thread-safe. As such, when accessing a driver directly,
care must be taken in a multitasking environment to prevent concurrent access to the same driver

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 68

instance. This can be achieved in multiple ways. At the application level, one of the simplest way is to
ensure that the driver and uart module instance are only accessed from a single thread only. Another
option is to implement a locking mechanism at the application level using a mutex or semaphore. This
last method requires an extra kernel object, however.

To simplify concurrent access to the driver and module instance from multiple threads, the uart module
API includes two functions, bp_uart_acquire() and bp_uart_release() to acquire and release
the module instance mutexes. Acquiring the instance prevents any concurrent access from any thread
trying to use the top level uart module API. To work properly, however, this requires all the threads
accessing the driver to use the acquire and release calls. It is also possible to use the top-level uart
module API while locked as the locking is recursive.

#include <uart/bp_uart.h>

int rtn;

rtn = bp_uart_acquire(hndl, TIMEOUT_INF)
if(rtn != RTNC_SUCCESS) { /* Error management */ }

// Perform driver and uart module operations here.

rtn = bp_uart_release(hndl, TIMEOUT_INF)
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 61 – Acquire and Release of a UART Instance.

13.6.3 Calling a Driver API
Listing 62 shows a complete example of calling a driver API including fetching the driver handler and
locking the uart module. For the purpose of the example, it is assumed that the STM32 UART driver is
being used, but it would work in a similar fashion with any other driver. Note that to access the driver
API it’s necessary to include the driver’s header file, bp_stm32_uart_drv.h for this example.

#include <uart/bp_uart.h>
#include <soc_comp/stmicro/stm32_uart/bp_stm32_uart_drv.h>

int rtn;

// Variable that will receive the driver handle.
bp_uart_drv_hndl_t drv_hndl;

rtn = bp_uart_drv_hndl_get(hndl, &drv_hndl);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

rtn = bp_uart_acquire(hndl, TIMEOUT_INF)
if(rtn != RTNC_SUCCESS) { /* Error management */ }

// Call the driver function. Note the usage of the driver handle.
rtn = bp_stm32_uart_en(drv_hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 13 Universal Asynchronous Receiver Transmitter (UART) 69

rtn = bp_uart_release(hndl, TIMEOUT_INF)
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 62 – Direct driver access example.

13.6.4 Alternative Driver Calling Method
In the previous section’s example, a driver’s function was called directly using its function name. For
driver specific functions, which are non-standard this is the only way possible. However for the
standard portion of the driver API, such as the lifecycle management functions and transfer functions, it
is also possible to use the driver API structure. This structure is declared in the driver header file, for
example to keep the same example of the STM32 UART driver, the driver structure is called
g_bp_stm32_uart_drv. Using it would look like the example in Listing 63.

#include <uart/bp_uart.h>
#include <soc_comp/stmicro/stm32_uart/bp_stm32_uart_drv.h>

int rtn;

rtn = g_bp_stm32_uart_drv.en(drv_hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 63 – Direct driver access alternative example.

13.7 Conclusion
This concludes the chapter on the uart module. The chapter covered the basics of using the uart
module such as the lifecycle and basic transmission and reception. The chapter also went over the
asynchronous API and how to access the UART drivers directly. Readers are encouraged to read the
uart module API reference for additional details on its usage and other advanced features of the API.
BASEplatform users should also take a look at the Platform Reference Manual for their selected
platform for addition information about their platform.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

14
Serial Peripheral Interface (SPI)

14.1 Introduction
The spi module is used to interface with external components using a Serial Peripheral Interface (SPI)
peripheral and link. An SPI interface is comprised of two synchronous serial links for input and output, a
clock line as well as one or more optional chip select lines. Communication is controlled entirely by the
master who performs simultaneous reading and writing by toggling the clock line.

Considering the wide variety of SPI and SPI- compatible peripherals it would be impossible to design a
high-level and portable API that could leverage the unique features of each and every peripheral. To
alleviate this, drivers are allowed to implement driver-specific functionalities to extend the features of
the core API of the spi module. Details on how to access those features are described later in this
chapter.

14.2 Overview
The spi module offers all the usual API functions to interact with an SPI peripheral. This includes the
usual lifecycle management functions as well as transmission, reception and control of the SPI chip
select lines if present. The module also enables the application to configure the clock phase and polarity
(a.k.a the SPI mode) as well as the serial clock frequency. The data transfer API features the usual
blocking, polling and asynchronous I/O variants for transmission and reception.

The communication API can be used to perform transmission and reception at the same time either
using two different buffers or by swapping the transmitted and received data in a single buffer. While
this last feature is rarely used when interacting with external peripherals, it can be useful when
performing full duplex communication with another MCU.

14.3 Lifecycle
The spi module follows the standard lifecycle used by many of the BASEplatform I/O modules. The
various states and functions to move between those states are schematized in Figure 6.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 71

Created

Configured

Enabled

Disabled

bp_spi_create()

bp_spi_cfg_set()

bp_spi_en()

bp_spi_dis()

bp_spi_destroy()

bp_spi_reset()

Error

bp_spi_reset()

bp_spi_en()

From any state

Figure 6 – State diagram of the spi module’s lifecycle.

To be useful a spi module instance must first be created by calling bp_spi_create(). Once created
the module instance must be configured with bp_spi_cfg_set() and then enabled using
bp_spi_en(). At this point the spi module instance is ready to be used for transmission and
reception. The module instance can then be disabled if desired by calling bp_spi_dis() and finally
destroyed to reclaim any resource associated with the instance by calling bp_spi_destroy(). It is
also possible to reset a module instance using bp_spi_reset().

The following sections look at each step in more details.

14.3.1 Create
Like most I/O modules of the BASEplatform the first step in order to use the spi module is to create a
new spi module instance. This can be done using the bp_spi_create() function. After being
created successfully, the newly created instance will be left in the created state after which it should
usually be configured and enabled prior to being used. Listing 64

#include <spi/bp_spi.h>
#include <board/bp_board_def.h>

int rtn;

// Variable that will receive the newly created handle.
bp_spi_hndl_t hndl;

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 72

rtn = bp_spi_create(&g_spi_board_def, &hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 64 – Creating a new SPI module instance.

The first argument to bp_spi_create() is a pointer to the board definition structure of the SPI
peripheral to associate with the new instance. These SPI definition structures are part of the board
definition and usually accessible by including the bp_board_def.h header file. See Chapter 4 for
more information on board definitions. The second argument to bp_spi_create() is a pointer to the
handle. If successful, it will be set to the newly created spi module handle.

bp_spi_create() performs all the necessary resource allocation required by the spi module and
associated SPI driver prior to returning. As such, once created, an spi module instance has all the
necessary memory and kernel objects required for its entire lifetime. See Chapter 6 for additional details
on memory allocation.

14.3.2 Configure
After being created an spi instance must be configured at least once before being enabled and used for
communication. Configuration is performed using bp_spi_cfg_set(). After being configured for the
first time, it is possible to update the configuration at runtime by calling bp_spi_cfg_set() again. It
is also possible to query the current configuration with bp_spi_cfg_get().

If the spi instance was in the created state prior to the call to bp_spi_cfg_set(), it will transition to
the configured state if the configuration is successful. Afterward it can then be enabled and used. If the
instance was already configured then the configuration is updated and the spi instance’s state remains
unaffected.

Listing 65 contains an example of configuration. In the example a configuration structure, cfg, of type
bp_spi_cfg_t is populated to set the configuration of an SPI peripheral. The configuration used in
the example is for a master running at a 1 MHz clock rate with polarity and phase set to 0. The
populated configuration structure is then passed to bp_spi_cfg_set() to perform the configuration.

#include <spi/bp_spi.h>

int rtn;

// SPI configuration structure.
bp_spi_cfg_t cfg;

// SPI configuration.
cfg.bit_rate = 1000000u;
cfg.clk_phase = 0u;
cfg.clk_polarity = 0u;
cfg.master = true;

rtn = bp_spi_cfg_set(hndl, &cfg, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 73

Listing 65 – Configuring an SPI module instance.

14.3.3 Enable
Once configured an spi instance must be enabled. This is performed using bp_spi_en(). A disabled
instance can also be enabled using the same call. A successful call to bp_spi_en() will place the
instance in the enabled state and it will now be ready to be used for transmission and reception. If the
instance was already in the enabled state then bp_spi_en() should have no effect.

The exact side effect of enabling a spi module instance is driver and platform specific. In most cases it
will enable the peripheral itself, take it out of reset and activate the peripheral’s clock.

An example of enabling an spi module instance is shown in Listing 66.

#include <spi/bp_spi.h>

int rtn;

rtn = bp_spi_en(hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 66 – Enabling an SPI module instance.

14.3.4 Disable
At runtime it is possible to temporarily disable a previously enabled spi instance by calling
bp_spi_dis(). After being disabled no other operations should be performed on the disabled
instance other than enabling it with bp_spi_en() or resetting the instance using bp_spi_reset().
Any other operation runs the risk of accessing a disabled peripheral which could cause a bus fault or
hang. If assertion checks are enabled in the BASEplatform configuration (See Chapter 7), a fatal error
may be returned when trying to access a disabled instance.

The exact side effects of disabling an spi instance are driver and hardware specific. If possible, the
device is placed in a low power disabled state and the peripheral’s clock is disabled. Also it is important
to note that the created and configured state are not equivalent to the disabled state, especially from a
power consumption point of view. Application developers who wish to configure a SPI peripheral but
leave it in a low power state should fully create and configure the instance and then call
bp_spi_dis() to disable the module instance and peripheral.

Listing 66 presents an example of disabling an spi module instance.

#include <spi/bp_spi.h>

int rtn;

rtn = bp_spi_dis(hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 74

Listing 67 – Disabling an SPI module instance.

14.3.5 Destroy
When an spi module instance is no longer needed it can be destroyed using bp_spi_destroy().
Doing so will reclaim any resource allocated by the instance assuming that the freeing of memory is
allowed by the default allocator. For more details on allocation policy see Chapter 6. Once destroyed
the instance handle becomes invalid and should not be used again.

It is important to disable an spi instance prior to destroying it, otherwise the peripheral might be left
active. An example of destroying an spi instance is shown in Listing 68.

#include <spi/bp_spi.h>

int rtn;

// First disable the instance.
rtn = bp_spi_dis(hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

rtn = bp_spi_destroy(hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 68 – Destroying an SPI module instance.

14.3.6 Reset
An spi instance in any state, other than destroyed, can be reset with the bp_spi_reset() function.
Resetting an instance will bring it back to the created state. If possible, the SPI driver will try to perform
a hardware soft reset on the peripheral if this is supported. This soft reset can either be at the
peripheral level if there is a soft reset bit, or using a centralized peripheral reset controller if it is
available on the current SoC.

Reset is the only operation that should be performed on a module instance that encountered an
unexpected error, i.e. returned RTNC_FATAL. A reset could be attempted to return the internal state of
the module and peripheral to a known state.

An example of reset is shown in Listing 69

#include <spi/bp_spi.h>

int rtn;

rtn = bp_spi_reset(hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 69 – Resetting an SPI module instance.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 75

14.4 Basic Usage
This section goes over the basic usage of the SPI module. This includes transmission and reception of
data and manipulation of the chip select lines.

14.4.1 Chip Select and De-Select
Before performing a master SPI transfer, it is often required to assert the chip select of the targeted
slave. Doing so can be handled in two ways depending on the SPI peripheral in use and how the chip
select are wired. The first method is to use the dedicated chip select API of the spi module. This
method is used when the current SPI driver and SoC have dedicated chip select lines which are
manipulated through the SPI peripheral. An example of asserting and deasserting such a chip select line
is shown in Listing 70. Performing a chip select in this way will also take exclusive control the spi
module instance to prevent other threads from attempting to do a transfer of their own to the wrong
slave.

#include <spi/bp_spi.h>

int rtn;

rtn = bp_spi_slave_sel(hndl, 0u, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

// Perform transfer here.

rtn = bp_spi_slave_desel(hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 70 – Controlling the chip select lines.

If a SoC or MCU doesn’t have any dedicated chip select lines then the chip select must be wired to a
GPIO. In that case the gpio module should be used to assert and de-assert the chip select line. Details
of the gpio modules can be found in Chapter 16.

14.4.2 Master SPI Transfer
At the logic level, an SPI transfer is performed by shifting data out of a shift register from the master to
the slave while shifting in data from the slave to the master. As such an SPI peripheral is always
transmitting and receiving at the same time. Since transmission and reception are the same operation to
the SPI peripheral the spi module only has one transfer function bp_spi_xfer(), which can be used
for both transmission and reception.

The application specifies the transfer to perform using a transfer description structure of type
bp_spi_tf_t, the definition of which is reproduced in Listing 71. The structure that must be
populated by the application contains various fields, two of which, callback and p_ctxt are only
used by asynchronous transfers explained later in this chapter. They can be set to NULL or ignored for
blocking transfers.

The transfer description structure contains two buffer pointers, one for transmission and one for
reception. The application can set one of them to NULL if only transmission or reception is desired. If

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 76

the transmit buffer is NULL, then zeroes will be sent out of the shift register to receive data. If the
reception pointer is NULL then the received data is discarded. Finally, the desired length of the transfer
can be specified.

typedef struct bp_spi_tf {
const void *p_tx_buf; // Transmit buffer.
void *p_rx_buf; // Receive buffer.
size_t len; // Length of the data to receive and/or transmit.
bp_spi_async_cb_t callback; // Async transfer callback.
void *p_ctxt; // Optional user context pointer.

} bp_spi_tf_t;

Listing 71 – SPI definition structure member details.

To perform a transfer the description structure must be passed to bp_spi_xfer() as shown in
Listing 72. In a master SPI transfer the p_tf_len argument of bp_spi_xfer() can be set to NULL as
it is not needed. For a master transfer the timeout value only means the time to wait for the interface to
be available, it does not affect the transfer once started.

#include <spi/bp_spi.h>

int rtn;

// Transmit and receive buffers.
uint8_t tx_buf[8];
uint8_t rx_buf[8];

// Transfer description structure.
bp_spi_tf_t tf;

// Setup the transfer description structure.
// If only the received or transmitted data is important
// one of the buffer pointer can be set to NULL.
tf.p_tx_buf = tx_buf;
tf.p_rx_buf = rx_buf;
tf.len = 8u;

rtn = bp_spi_xfer(hndl, &tf, NULL, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 72 – Master SPI transfer example.

14.5 Asynchronous I/O
Apart from the blocking API the spi module also features a non-blocking asynchronous API. With the
asynchronous API an application can start an SPI transfer without having to wait for it to complete
afterward. Upon completion of the SPI asynchronous transfer, a user-specified callback is called from
the SPI interrupt handler to signal the application that the transfer is finished and to report the result.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 77

From within this callback that application can choose to either finish the transfer or start another
asynchronous transfer immediately. This last feature can be very useful when transferring to and from a
circular buffer.

Asynchronous reception and transmission is performed in a similar fashion to the blocking API described
in the previous sections. The transfer description structure to be used is the same, however, when
starting an asynchronous transfer it is important to specify a callback. The application can also set a
user-defined pointer that will be passed unmodified to the callback when invoked.

To signal the application that a transfer is completed the SPI driver will call a user-specified callback
similar to the one in Listing 73. Through the callback arguments, the application is informed of the
status of the completed transfer and the amount of data transferred. A pointer to the transfer
descriptor structure is also passed to the callback. With that description structure, the application code
can access the original transfer parameters as well as the user context pointer. That user context
pointer can be used to pass information from the application to the callback.

bp_spi_action_t spi_async_callback(int status, size_t tf_len, bp_spi_tf_t *p_tf)
{

// Action to be undertaken by the SPI driver interrupt
// handler upon return.
return BP_SPI_ACTION_FINISH;

}

Listing 73 – SPI asynchronous transfer callback example.

When retuning from the callback, the application should use one of the two possible return values,
namely BP_SPI_ACTION_FINISH or BP_SPI_ACTION_RESTART. If the callback returns with
BP_SPI_ACTION_FINISH, as shown in Listing 73, the transfer is completed normally. If, however
BP_SPI_ACTION_RESTART is returned, the transfer will be restarted with the information from the
transfer descriptor. The application is allowed to modify the transfer descriptor through the p_tf
argument prior to restarting the transfer.

When performing an asynchronous transfer the transfer can be considered to have been started when
bp_spi_xfer_async() returns. It is important to keep in mind that, due to timing and context switch,
the transfer may have already completed before returning.

14.5.1 Asynchronous Transfer
Listing 74 contains an example of asynchronous transfer. The callback function, as explained above isn’t
shown but should be defined somewhere. It’s imperative to keep the buffer valid for the entire duration
of the asynchronous transfer otherwise the transmitted data might be corrupted.

#include <spi/bp_spi.h>

int rtn;

// Transmit and receive buffers.
uint8_t tx_buf[8];

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 78

uint8_t rx_buf[8];

// Transfer description structure.
bp_spi_tf_t tf;

// Setup the transfer description structure.
tf.p_tx_buf = tx_buf;
tf.p_rx_buf = rx_buf;
tf.len = 8u;
tf.callback = spi_async_callback;
tf.p_ctxt = NULL;

rtn = bp_spi_xfer_async(hndl, &tf, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 74 – Master SPI asynchronous transfer example.

14.5.2 Aborting an Asynchronous Transfer
A running asynchronous transfer can be aborted by calling bp_spi_xfer_async_abort(). The abort
function has two optional arguments which, if passed to the function, will return the number of bytes
transferred and received at the moment the transfer was aborted. Note that it’s possible for the transfer
to complete while the abort function is called in which case the returned transfer length will be 0 and
the abort function won’t have any effect. Listing 75 contains an example of aborting an asynchronous
SPI transfer.

#include <spi/bp_spi.h>

int rtn;

size_t rx_len;
size_t tx_len;

rtn = bp_spi_xfer_async_abort(hndl, &tx_len, &rx_len, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 75 – Master SPI asynchronous transfer example.

14.5.3 Waiting for an SPI Interface to be Idle
If an application wishes to wait for an SPI interface to be idle, this can be done by calling
bp_spi_idle_wait(). Calling this function will wait for any blocking or asynchronous transfer to be
completed before returning. In addition it will also wait for the physical transfer to be completed if
possible. An example of calling bp_spi_idle_wait() is shown in Listing 76.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 79

#include <spi/bp_spi.h>

int rtn;

rtn = bp_spi_idle_wait(hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 76 – Waiting for an SPI interface to be idle.

14.6 Direct Access to the Driver
The spi module is designed to offer a strong set of features that covers the majority of use cases. At the
same time, the set of features is also selected to ensure that it can be supported by a large majority of
SPI peripherals. As such, it is natural that some peripheral specific features cannot be supported by the
top-level portable API of the spi module. To alleviate this, the SPI drivers can implement driver specific
functions available to the application to access advanced features of the underlying peripheral. To use
them, however, the application needs to access the driver directly which is explained in this section.

Apart from accessing driver specific features, using the driver interface directly offers a slight
improvement in performance since the call overhead is reduced. However it also means that access to
the driver is not inherently thread safe as the top-level spi module is responsible for ensuring thread
safety. Finally, for applications that want to reduce the RAM usage to a minimum, it is possible to
instantiate an SPI driver by itself without having an instance of the top-level spi module. Further
Information on the driver API can be found in the API Reference Manual.

14.6.1 Retrieving the Driver Handle
The first step in accessing a driver is to retrieve its handle. This can be performed using
bp_spi_drv_hndl_get() as in Listing 77. In the example, if successful, the driver handle will be set
in drv_hndl. That handle can then be used to access the driver API.

#include <spi/bp_spi.h>

int rtn;

// Variable that will receive the driver handle.
bp_spi_drv_hndl_t drv_hndl;

rtn = bp_spi_drv_hndl_get(hndl, &drv_hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 77 – Retrieving the driver handle from an SPI module instance.

14.6.2 Locking an SPI Module Instance
Most BASEplatform drivers are not inherently thread-safe. As such, when accessing a driver directly,
care must be taken in a multitasking environment to prevent concurrent access to the same driver

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 80

instance. This can be achieved in multiple ways. At the application level, one of the simplest ways is to
ensure that the driver and spi module instance are only accessed from a single thread only. Another
option is to implement a locking mechanism at the application level using a mutex or semaphore. This
last method requires an extra kernel object, however.

With the spi module locking an instance is rather simple, it is sufficient to call bp_spi_slave_sel()
to lock the instance and bp_spi_slave_desel() to release it. This can be used by the application to
prevent other threads from accessing the module API while performing direct driver operations.

14.6.3 Calling a Driver API
Listing 78 shows a complete example of calling a driver specific API. For the purpose of the example the
driver specific function bp_imx_spi_loop_mode_en() is called. This function is specific to the i.MX
SPI driver and enables the peripheral loopback mode. When calling a driver directly, it is necessary to
include that driver’s header file, bp_imx_spi_drv.h in this case.

#include <spi/bp_spi.h>
#include <soc_comp/imx/bp_imx_spi_drv.hh>

int rtn;

// Variable that will receive the driver handle.
bp_spi_drv_hndl_t drv_hndl;

rtn = bp_spi_drv_hndl_get(hndl, &drv_hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

rtn = bp_imx_spi_loop_mode_en(drv_hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 78 – Direct driver access example.

14.6.4 Alternative Driver Calling Method
In the previous section’s example, a driver’s function was called directly using its function name. For
driver specific functions, which are non-standard this is the only way possible. However for the
standard portion of the driver API, such as the lifecycle management functions and transfer functions, it
is also possible to use the driver API structure. This structure is declared in the driver header file, for
example to keep the same example of the i.MX SPI driver, the driver structure is called
g_bp_imx_spi_drv. Using it would look like the example in Listing 79.

#include <spi/bp_spi.h>
#include <soc_comp/imx/bp_imx_spi_drv.hh>

int rtn;

rtn = g_bp_imx_spi_drv.en(drv_hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 79 – Alternative direct driver access example.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 14 Serial Peripheral Interface (SPI) 81

14.7 Conclusion
This concludes the chapter on the spi module. The chapter covered the basics of using the spi
module such as the lifecycle and basic transmission and reception. The chapter also went over the
asynchronous API and how to access the SPI drivers directly. Readers are encouraged to read the spi
module API reference for additional details on its usage and other advanced features of the API.
BASEplatform users should also take a look at the Platform Reference Manual for their selected
platform for additional information about their platform.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

15
Inter-Integrated Circuit (I2C)

15.1 Introduction
The i2c module is used to interface with other board components using the I2C bus. The I2C bus is a
low speed two-wire half-duplex bus where each device on the bus uses open-drain I/O with pull-up
resistors. Using this open-drain design the I2C bus can be used in a multi-master configuration although
that is rare. Contrary to UART and SPI the I2C protocol supports multiple slaves using an addressing
scheme comprising a 7 or 10-bit address. The I2C bus also allows the slave devices to wait before
sending data, a technique known as clock stretching. This removes the strict timing constraint often
seen when the master controls the data clock such as in SPI where a slave device has a very small
window of time to prepare the data to send.

Considering the wide variety of I2C and I2C compatible peripherals, it would be impossible to design a
high-level and portable API that could leverage the unique features of each and every peripheral. To
alleviate this, drivers are allowed to implement driver-specific functionalities to extend the features of
the core API of the i2c module. Details on how to access those features is described later in this
chapter.

15.2 Overview
The i2c module features the usual I/O API of the BASEplatform including the standard lifecycle
management API as well as transmission and reception. The module also offers the expected control
over the I2C clock rate and choice of either master or slave configuration. The I/O API like the uart
and spi module gives the application developer the choice between a blocking, polling and
non-blocking asynchronous I/O API.

I2C drivers from the BASEplatform usually attempt to minimize context switches and unnecessary
interrupts. While I2C communication is relatively low speed, every effort is made to reduce the CPU
overhead of performing I2C communication.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 83

15.3 Lifecycle
The I2C module follows the usual lifecycle of BASEplatform I/O modules. The various states and
functions to move between those states are schematized in Figure 7.

Created

Configured

Enabled

Disabled

bp_i2c_create()

bp_i2c_cfg_set()

bp_i2c_en()

bp_i2c_dis()

bp_i2c_destroy()

bp_i2c_reset()

Error

bp_i2c_reset()

bp_i2c_en()

From any state

Figure 7 – State diagram of the i2c module’s lifecycle.

To be useful a i2c module instance must first be created by calling bp_i2c_create(). Once created
the module instance must be configured with bp_i2c_cfg_set() and then enabled using
bp_i2c_en(). At this point the i2c module instance is ready to be used for transmission and
reception. The module instance can then be disabled if desired by calling bp_i2c_dis() and finally
destroyed to reclaim any resource associated with the module instance with bp_i2c_destroy(). It is
also possible to reset a module instance using bp_i2c_reset().

The following sections look at each step in more details.

15.3.1 Create
A new instance of the i2c module can be created using bp_i2c_create(). After being created
successfully, the new instance will be left in the created state after which it should be configured and
enabled before being used. An example of creating an i2c module instance is shown in Listing 80.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 84

#include <i2c/bp_i2c.h>
#include <board/bp_board_def.h>

int rtn;

// Variable that will receive the newly created handle.
bp_i2c_hndl_t hndl;

rtn = bp_i2c_create(&g_i2c_board_def, &hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 80 – Creating a new I2C module instance.

The first argument to bp_i2c_create() is a pointer to the board definition structure of the I2C
peripheral to associate with the new instance. These I2C definition structures are part of the board
definition and usually accessible by including the bp_board_def.h header file. See Chapter 4 for
more information on board definitions. The second argument to bp_i2c_create() is a pointer to the
handle. If successful, it will be set to the newly created i2c module handle.

bp_i2c_create() performs all the necessary resource allocation required by the i2c module and
associated I2C driver prior to returning. As such, once create an i2c module instance has all the
necessary memory and kernel objects required for its entire lifetime. See Chapter 6 for additional details
on memory allocation.

15.3.2 Configure
After being created an i2c instance should be configured after which it can finally be enabled.
Configuration of an I2C peripheral is done by calling bp_i2c_cfg_set(). At runtime it is possible to
call bp_i2c_create() again to update the confifugration if desired. At any time it is possible to query
the current configuration with bp_i2c_cfg_get().

If the i2c instance was just created, it will transition into the configured state if the call to
bp_i2c_cfg_set() is successful. If the instance was already configured then the configuration is
updated but the state of the instance is left unchanged unless a fatal error occurs.

An example of configuration is shown in Listing 81. In the example the instance is configured to run at
100 kHz in a master configuration. When running as a master the I2C address member of the
configuration slave_addr is ignored and can be set to 0.

#include <i2c/bp_i2c.h>

int rtn;

// I2C configuration structure.
bp_i2c_cfg_t cfg;

// Populating the I2C configuration.
cfg.bit_rate = 100000u;
cfg.master = 1;

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 85

cfg.slave_addr = 0u; // Slave address ignored for master.

rtn = bp_i2c_cfg_set(hndl, &cfg, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 81 – Configuring an I2C module instance.

15.3.3 Enable
After having configured an i2c instance, it must then be enabled. This can be achieved with the
bp_i2c_en() API function. It is also possible to enable an instance that was disabled previously. A
successful call to bp_i2c_en() will place the module in the enabled state and it can then be used for
transmission and reception. If the instance was already enabled then bp_i2c_en() should have no
effect.

The exact side effects of enabling an i2c instance are specific to the driver and I2C peripheral. In most
cases it will enable the I2C peripheral’s clock and bring it out of reset if appropriate.

Listing 82 shows and example of enabling an i2c instance.

#include <i2c/bp_i2c.h>

int rtn;

rtn = bp_i2c_en(hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 82 – Enabling an I2C module instance.

15.3.4 Disable
At runtime it is possible to disable an enabled i2c instance with the bp_i2c_dis() function. After
being disabled, no other operations should be performed on the instance other than enabling it with
bp_i2c_en() or resetting the instance using bp_i2c_reset(). Any other operation runs the risk of
accessing a disabled peripheral which could cause a bus fault or hang. If assertion checks are enabled in
the BASEplatform configuration (See Chapter 7) a fatal error may be returned when trying to access a
disabled instance.

The exact side effects of disabling a i2c instance is driver and hardware specific. If possible, the device
is placed in a low power disabled state and the peripheral’s clock is disabled. Also it is important to note
that the created and configured state are not equivalent to the disabled state, especially from a power
consumption point of view. Application developers who wish to configure an I2C peripheral but leave it
in a low power state should fully create and configure the instance and then call bp_i2c_dis() to
disable the module instance and peripheral.

Listing 83 presents an example of disabling an i2c module instance.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 86

#include <i2c/bp_i2c.h>

int rtn;

rtn = bp_i2c_dis(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 83 – Disabling an I2C module instance.

15.3.5 Destroy
At any point if a i2c instance is no longer needed, it can be destroyed using bp_i2c_destroy().
Destroying an instance will reclaim any resource assigned to the instance but only if freeing of memory
is permitted by the primary memory allocator. For more details on allocation policy see Chapter 6. Once
destroyed the instance handle becomes invalid and should not be used again.

It is important to first disable an i2c instance prior to destroying it otherwise the peripheral will be left
active. Listing 84 contains an example of destroying an i2c module instance.

#include <i2c/bp_i2c.h>

int rtn;

// First disable the instance.
rtn = bp_i2c_dis(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

rtn = bp_i2c_destroy(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 84 – Destroying an I2C module instance.

15.3.6 Reset
A i2c instance in any state, other than destroyed, can be reset with the bp_i2c_reset() function.
Resetting an instance will bring it back to the created state. If possible, the I2C driver will try to perform
a hardware soft reset on the peripheral if this is supported. This soft reset can either be at the
peripheral level if there is a soft reset bit, or using a centralized peripheral reset controller if it is
available on the current SoC.

Reset is the only operation that should be performed on a module instance that encountered an
unexpected error, i.e. returned RTNC_FATAL. A reset could be attempted to return the internal state of
the module and peripheral to a known state.

An example of reset is shown in Listing 85.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 87

#include <i2c/bp_i2c.h>

int rtn;

rtn = bp_i2c_reset(hndl, TIMEOUT_INF);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 85 – Resetting an I2C module instance.

15.4 Basic Usage
This section will go over some example usage of the i2c module for master read and write. Since
reading and writing are basically the same operation as far as the I2C bus is concerned the i2c module
only has one transfer function bp_i2c_xfer() that can be used for reading and writing.

15.4.1 Master Transfer
Transferring data using the i2c module API is done through the use of a transfer description structure.
The content of that structure is reproduced in Listing 86. Within the bp_i2c_tf_t structure two
pointers, the callback and p_ctxt pointers are only useful when using the asynchronous I/O
described later in this chapter. For a transfer using the blocking API they can be set to NULL or ignored.

When performing a transfer, the application must set the pointer to the buffer that contains or will
receive the transferred data as well as the number of bytes to transfer. Then the transfer direction must
be set to either BP_I2C_DIR_TX or BP_I2C_DIR_RX. Finally, the slave address should be set for a
master transfer. Attempting to access an inexistent slave will return RTNC_IO_ERR.

As an additional feature the hold_nack member of the transfer description structure can be used in
master mode to hold the bus after a transfer has completed. This prevents any other master from using
the bus until it is released. This is useful when multiple transfers must be done in an atomic fashion
without interference from other bus masters.

typedef struct bp_i2c_tf {
bp_i2c_dir_t dir; // Transfer direction.
bool hold_nack; // Hold or Nack after transfer.
void *p_buf; // Data buffer to transmit or receive.
uint16_t slave_addr; // Slave address.
uint32_t buf_len; // Length of data to transmit or receive in bytes.
bp_i2c_async_cb_t callback; // Async transfer callback.
void *p_ctxt; // Optional user context pointer.

} bp_i2c_tf_t;

Listing 86 – I2C transfer description structure.

Once populated the structure should be passed to bp_i2c_xfer() to start the transfer. An example
of this is depicted in Listing 87. When performing a master transfer the p_tf_len argument is unused
and should be set to NULL. Also for a master transfer the timeout argument only means the length of
time to wait for the interface to be free but doesn’t dictate how much time it may take to perform the
actual transfer.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 88

#include <i2c/bp_i2c.h>

int rtn;

// Buffer to transmit.
uint8_t buf[8];

// Transfer description structure.
bp_i2c_tf_t tf;

// Transfer setup.
tf.p_buf = buf;
tf.buf_len = 8u;
tf.dir = BP_I2C_DIR_TX;
tf.slave_addr = 10u;
tf.hold_nack = false;

rtn = bp_i2c_xfer(hndl, &tf, NULL, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 87 – Master I2C transfer example.

15.5 Asynchronous I/O
In addition to the blocking API described in the previous sections the i2c module also has an
asynchronous I/O API that allows the application to start a transfer without blocking. Upon completion
of the transfer, a user speficied callback is invoked from the I2C interrupt handler. The result of the
operation is reported as an argument to the callback. From within the callback, the application can
decide to either end the transfer or restart the transfer using different transfer settings. This last feature
allows the application to transmit or receive continuously without intervention of a thread or the
background task.

Launching an asynchronous transfer is very similar to using the blocking API. The main difference is that
the application must pass a suitable callback to be called upon completion. This callback should be
similar in form to the one in Listing 88. Through the callback arguments, the application is informed of
the status of the completed transfer and the amount of data transferred. A pointer to the transfer
descriptor structure is also passed to the callback. Within that description structure, the application
code can access the original transfer parameters as well as the user context pointer. That user context
pointer can be used to pass information from the application to the callback.

bp_i2c_action_t i2c_async_callback(int status, size_t tf_len, bp_i2c_tf_t *p_tf)
{

// Action to be undertaken by the I2C driver interrupt
// handler upon return.
return BP_I2C_ACTION_FINISH;

}

Listing 88 – I2C asynchronous transfer callback.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 89

When retuning from the callback, the application should use one of the two possible return values,
namely BP_I2C_ACTION_FINISH or BP_I2C_ACTION_RESTART. If the callback returns with
BP_I2C_ACTION_FINISH, as shown in Listing 88, the transfer is completed normally. If, however,
BP_I2C_ACTION_RESTART is returned, the transfer will be restarted with the information from the
transfer descriptor. The application is allowed to modify the transfer descriptor through the p_tf
argument prior to restarting the transfer.

When performing an asynchronous transfer the transfer can be considered to have been started when
bp_i2c_xfer_async() returns. It is important to keep in mind that, due to timing and context switch,
the transfer may have already completed before returning.

15.5.1 Master Asyncrhronous Transfer
Listing 89 contains an example of asynchronous transfer. The callback function, as explained above isn’t
shown but should be defined somewhere. It’s imperative to keep the buffer valid for the entire duration
of the asynchronous transfer otherwise the transmitted data might be corrupted.

#include <i2c/bp_i2c.h>

int rtn;

// Buffer to transmit.
uint8_t buf[8];

// Transfer description structure.
bp_i2c_tf_t tf;

// Transfer setup.
tf.p_buf = buf;
tf.buf_len = 8u;
tf.dir = BP_I2C_DIR_TX;
tf.slave_addr = 10u;
tf.hold_nack = false;
tf.callback = i2c_async_callback;
tf.p_ctxt = NULL;

rtn = bp_i2c_xfer_async(hndl, &tf, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 89 – Master I2C asynchronous transfer example.

15.5.2 Aborting an Asynchronous Transfer
A running asynchronous transfer can be aborted by calling bp_i2c_xfer_async_abort(). The abort
function has an optional argument which, if passed to the function, will return the number of bytes
transferred at the moment the transfer was aborted. Note that it’s possible for the transfer to complete
while the abort function is called in which case the returned transfer length will be 0 and the abort
function won’t have any effect. Listing 90 contains an example of aborting an asynchronous I2C transfer.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 90

#include <i2c/bp_i2c.h>

int rtn;

size_t tf_len;

rtn = bp_i2c_xfer_async_abort(hndl, &tf_len, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 90 – Master I2C asynchronous transfer abort example.

15.5.3 Waiting for an I2C Interface to be Idle
If an application wish to wait for an I2C interface to be idle, this can be done by calling
bp_i2c_idle_wait(). Calling this function will wait for any blocking or asynchronous transfer to be
completed before returning. In addition it will also wait for the physical transfer to be completed if
possible. An example of calling bp_i2c_idle_wait() is shown in Listing 91.

#include <i2c/bp_i2c.h>

int rtn;

rtn = bp_i2c_idle_wait(hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 91 – Waiting for an I2C interface to be idle.

15.6 Direct Access to the Driver
The i2c module is designed to offer a strong set of features that covers the majority of use cases. At the
same time, the set of features is also selected to ensure that it can be supported by a large majority of
SPI peripherals. As such, it is natural that some peripheral specific features cannot be supported by the
top-level portable API of the i2c module. To alleviate this, the I2C drivers can implement driver specific
functions made available to the application to access advanced features of the underlying peripheral. To
use them, however, the application needs to access the driver directly which is explained in this section.

Apart from accessing driver specific features, using the driver interface directly offers a slight
improvement in performance since the call overhead is reduced. However it also means that access to
the driver is not inherently thread safe as the top-level i2c module is responsible for ensuring thread
safety. Finally, for applications that want to reduce the RAM usage to a minimum, it is possible to
instantiate an I2C driver by itself without having an instance of the top-level i2c module. Information
on the driver API can be found in the API reference manual.

15.6.1 Retrieving the Driver Handle
The first step in accessing a driver is to retrieve its handle. This can be performed using
bp_i2c_drv_hndl_get() as in Listing 92. In the example, if successful, the driver handle will be set
in drv_hndl. That handle can then be used to access the driver API.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 91

#include <i2c/bp_i2c.h>

int rtn;

// Variable that will receive the driver handle.
bp_i2c_drv_hndl_t drv_hndl;

rtn = bp_i2c_drv_hndl_get(hndl, &drv_hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 92 – Retrieving the driver handle from an I2C module instance.

15.6.2 Locking the I2C Module Instance
Most BASEplatform drivers are not inherently thread-safe. As such, when accessing a driver directly,
care must be taken in a multitasking environment to prevent concurrent access to the same driver
instance. This can be achieved in multiple ways. At the application level, one of the simplest ways is to
ensure that the driver and i2c module instance are only accessed from a single thread only. Another
option is to implement a locking mechanism at the application level using a mutex or semaphore. This
last method requires an extra kernel object, however.

To simplify concurrent access to the driver and module instance from multiple threads, the i2c module
API includes two functions, bp_i2c_acquire() and bp_i2c_release() to acquire and release the
module instance mutexes. Acquiring the instance prevents any concurrent access from any thread trying
to use the top level i2c module API. To work properly, however, this requires all the threads accessing
the driver to use the acquire and release calls. It is also possible to use the top-level i2c module API
while locked as the locking is recursive.

#include <i2c/bp_i2c.h>

int rtn;

rtn = bp_i2c_acquire(hndl, TIMEOUT_INF)
if(rtn != RTNC_SUCCESS) { /* Error management */ }

// Perform driver and i2c module operations here.

rtn = bp_i2c_release(hndl, TIMEOUT_INF)
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 93 – Acquire and Release of an I2C Instance.

15.6.3 Calling a Driver API
Listing 94 shows a complete example of calling a driver API including fetching the driver handler and
locking the i2c module. For the purpose of the example, it is assumed that the Zynq I2C driver is being
used, but it would work in a similar fashion with any other drivers. Note that to access the driver API it’s
necessary to include the driver’s header file, bp_zynq_i2c_drv.h for this example.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 92

#include <i2c/bp_i2c.h>
#include <soc_comp/zynq/zynq_i2c/bp_zynq_i2c_drv.h>

int rtn;

// Variable that will receive the driver handle.
bp_i2c_drv_hndl_t drv_hndl;

rtn = bp_i2c_drv_hndl_get(hndl, &drv_hndl);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

rtn = bp_i2c_acquire(hndl, TIMEOUT_INF)
if(rtn != RTNC_SUCCESS) { /* Error management */ }

// Call the driver function directly. Note the usage of the driver handle.
rtn = bp_zynq_i2c_timeout_set(drv_hndl, 32u);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

rtn = bp_i2c_release(hndl, TIMEOUT_INF)
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 94 – Direct driver access example.

15.6.4 Alternative Driver Calling Method
In the previous section’s example, a driver’s function was called directly using its function name. For
driver specific functions, which are non-standard this is the only way possible. However for the
standard portion of the driver API, such as the lifecycle management functions and transfer functions, it
is also possible to use the driver API structure. This structure is declared in the driver header file, for
example to keep the same example of the Zynq I2C driver, the driver structure is called
g_bp_zynq_i2c_drv. Using it would look like the example in Listing 95.

#include <i2c/bp_i2c.h>
#include <soc_comp/zynq/bp_zynq_spi_drv.hh>

int rtn;

rtn = g_bp_zynq_i2c_drv.en(drv_hndl, TIMEOUT_INF);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 95 – Alternative direct driver access example.

15.7 Conclusion
This chapter went over the i2c module functionalities and basic usage examples. Including creating and
configuring a new i2c module instance and various other lifecycle operations. The chapter also went
over I2C transfer using both the blocking API and the non-blocking asynchronous API. Readers are
encouraged to read the i2c module API reference for additional details on its usage and other

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 15 Inter-Integrated Circuit (I2C) 93

advanced features of the API. BASEplatform users should also take a look at the Platform Reference
Manual for their selected platform for addition information about their platform.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

16
General Purpose I/O (GPIO)

16.1 Introduction
The gpio module is used to interact with an MCU’s General Purpose Input/Output (GPIO) peripheral. It
can also be used to control external I/O expanders when coupled with a suitable driver. The module
allows control and reading of the pins state and direction. The gpio module follows the same design as
other low speed I/O modules such as the uart and spi modules. As such it contains most of the same
lifecycle management functions as well as a dedicated API to control the GPIO pins.

Readers should note that the gpio module is only concerned with control over the pin state and
direction. The module does not, however, have any control over the pin multiplexing configuration (a.k.a
pin mux) nor does it have control over the pad configuration such as pull-up and drive strength
configuration. Instead, a separate platform specific module is provided for each MCU or SoC thus giving
the maximum degree of control over the mux configuration. These platform specific modules are
documented in the Platform Reference Mannual for the device in question.

16.2 Overview
The gpio module is similar to other BASEplatform I/O modules but has a few idiosyncrasies specific to
itself. The module’s lifecycle management functions are similar to the others, however, it lacks the
configuration step. The I/O API is thead-safe, as the other I/O modules, but in addition it is usually
non-blocking when interacting with the GPIO pins belonging to the MCU. However there are some
exceptions to that last statement, specifically when the GPIO module is used to access an external I/O
expander. This situation is described later in this chapter. It is also important to remember that the
initialization sequence of pin muxing, pad configuration and finally GPIO configurations are very
platform specific. Care should be taken to study the documentation as well as the example provided
with the BASEplatform for each platform.

To improve performance and reduce the overhead of accessing the GPIO pins, the BASEplatform GPIO
drivers are designed to be non-blocking while still being thread-safe. This means that the API functions
of the gpio modules do not take a timeout value as argument as is common with other BASEplatform
modules. Another reason to make the GPIO API non-blocking is to permit them to be used from within
critical sections and interrupt service routines.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 16 General Purpose I/O (GPIO) 95

16.2.1 Effect of Disabling or Resetting the GPIO Module
Unlike other communication peripherals the GPIO peripheral can be central to the operation of a SoC.
Resetting or disabling it could affect the state of external pins and on some platform even disable pins
configured to alternate peripheral functions other than GPIO. As such it is not recommended to disable
or reset the GPIO module at runtime unless the side-effects are properly understood. Even then, in
many cases the GPIO driver may not have the ability to disable or reset the GPIO peripheral if that
involves too many subsystems.

16.2.2 Using the GPIO Module to Interface With I/O Expanders
The GPIO module and most GPIO drivers are non-blocking making them more efficient since the time it
takes to set and configure GPIO pins is quite short. Due to that last statement, the overhead of using a
mutex appears superfluous. However, when using the GPIO module with an I/O expander driver care
should be taken as the driver may be blocking. This is definitely the case when accessing an SPI or I2C
expander which requires the use of a blocking communication API to interact with the expander. Even
simple expander drivers based on a shift register may prefer to use a semaphore or mutex in order not
to disable interrupts for too long. Consequently, while the GPIO API can be used from within critical
sections and interrupt handler this should not be attempted when interfacing with an I/O expander.

16.2.3 Pin and Bank Numbering
The gpio API is designed to be cross-platform, however, not every platform follows the same scheme
when it comes to numbering their GPIO. For example, some will use bank numbers while others will not.
The BASEplatform attempts to follow the manufacturer’s numbering when possible. This means that the
signification of bank and pin numbers passed to the gpio module API is platform specific. Additional
details can be found within each platform’s Reference Manual.

16.3 Lifecycle
The gpio module lifecycle is similar to many other BASEplatform modules albeit being a little simpler
due to the lack of configuration step. The various states and functions to move between those states
are schematized in Figure 8.

To be used a gpio module instance must first be created by calling bp_gpio_create(). Once created
the module instance must be enabled with bp_gpio_en(). At this point the gpio module instance is
ready to be used. The module instance can then be disabled if desired by calling bp_gpio_dis() and
finally destroyed to reclaim any resource associated with the module instance with
bp_gpio_destroy(). It is also possible to reset an instance using bp_gpio_reset().

The following sections look at each step in more details.

16.3.1 Create
Like all I/O modules, the gpio module must first be created. This can be achieved by calling
bp_gpio_create(). After being created the new instance will be in the created state and must then
be enabled prior to being used. As mentioned multiple time in this chapter the gpio module doesn’t
have a configuration step. An example of creating a gpio module instance is shown in Listing 96.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 16 General Purpose I/O (GPIO) 96

Created

Enabled

Disabled

bp_gpio_create()

bp_gpio_en()

bp_gpio_dis()

bp_gpio_destroy()

bp_gpio_reset()

Error

bp_gpio_reset()

bp_gpio_en()

From any state

Figure 8 – State diagram of the gpio module’s lifecycle.

#include <gpio/bp_gpio.h>
#include <board/bp_board_def.h>

int rtn;

// Variable that will receive the newly created handle.
bp_gpio_hndl_t hndl;

rtn = bp_gpio_create(&g_gpio_board_def, &hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 96 – Creating a new GPIO module instance.

The first argument to bp_gpio_create() is a pointer to the board definition structure of the GPIO
peripheral to associate with the new instance. These GPIO definition structures are part of the board
definition and usually accessible by including the bp_board_def.h header file. See Chapter 4 for
more information on board definitions. The second argument to bp_gpio_create() is a pointer to
the handle. If successful, it will be set to the newly created gpio module handle.

bp_gpio_create() performs all the necessary resource allocation required by the gpio module and
associated GPIO driver prior to returning. As such, once create an gpio module instance has all the
necessary memory and kernel objects required for its entire lifetime. See Chapter 6 for additional details
on memory allocation.

16.3.2 Enable
After having created a gpio instance it must then be enabled. This can be done using the
bp_gpio_en() API function. It is also possible to enable an instance that was disabled previously. A

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 16 General Purpose I/O (GPIO) 97

successful call to bp_gpio_en() will place the module in the enabled state and it can then be used
normally. If the instance was already enabled then bp_gpio_en() should have no effect.

The exact side effects of enabling a gpio instance is specific to the driver and GPIO peripheral. In most
cases it will enable the peripheral’s clock and bring it out of reset if appropriate. Listing 97 shows and
example of enabling a gpio instance.

#include <gpio/bp_gpio.h>

int rtn;

rtn = bp_gpio_en(hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 97 – Enabling an GPIO module instance.

16.3.3 Disable
At runtime it is possible to disable an enabled gpio instance with the bp_gpio_dis() function.
Although as mentioned earlier in this chapter it may not be advisable to disable a GPIO peripheral. After
being disabled, no other operations should be performed on the instance other than enabling it with
bp_gpio_en() or resetting the instance using bp_gpio_reset(). Any other operation runs the risk
of accessing a disabled peripheral which could cause a bus fault or hang. If assertion checks are enabled
in the BASEplatform configuration (See Chapter 7) a fatal error may be returned when trying to access a
disabled instance.

The exact side effects of disabling a gpio instance is driver and hardware specific. If possible, the
device is placed in a low power disabled state and the peripheral’s clock is disabled. Also it is important
to note that the created state is not equivalent to the disabled state, especially from a power
consumption point of view. Application developers who wish to create a GPIO peripheral but leave it in
a low-power state should fully create the instance and then call bp_gpio_dis() to disable the module
instance and peripheral.

Listing 98 presents an example of disabling a gpio module instance.

#include <gpio/bp_gpio.h>

int rtn;

rtn = bp_gpio_dis(hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 98 – Disabling an GPIO module instance.

16.3.4 Destroy
At any point if a gpio instance is no longer needed, it can be destroyed using bp_gpio_destroy().
Destroying an instance will reclaim any resource assigned to the instance but only if freeing of memory

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 16 General Purpose I/O (GPIO) 98

is permitted by the primary memory allocator. For more details on allocation policy see Chapter 6. Once
destroyed the instance handle becomes invalid and should not be used again.

It is not recommended to destroy the primary gpio module instance that controls the MCU’s pins.

#include <gpio/bp_gpio.h>

int rtn;

rtn = bp_gpio_destroy(hndl);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 99 – Destroying a GPIO module instance.

16.3.5 Reset
A gpio instance in any state, other than destroyed, can be reset with the bp_gpio_reset() However
it is not recommended to reset the MCU’s GPIO peripheral to prevent corruption of the pin state.

An example of reset is shown in Listing 100.

#include <gpio/bp_gpio.h>

int rtn;

rtn = bp_gpio_reset(hndl);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 100 – Resetting a GPIO module instance.

16.4 Usage
The gpio module can be used to perform one of three things, set the direction of a GPIO pin, read a
GPIO pin or set the state of a GPIO pin. This section will cover basic examples of each operation.

16.4.1 Setting the Direction of a GPIO Pin
Setting the direction of a GPIO pin can be done with bp_gpio_dir_set() while it is possible to query
the direction of a pin with bp_gpio_dir_get(). The direction must be set to either to
BP_GPIO_DIR_IN or BP_GPIO_DIR_OUT. Listing 101 show an example of setting the direction of pint
5 of bank 0 as an output pin.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 16 General Purpose I/O (GPIO) 99

#include <gpio/bp_gpio.h>

int rtn;

rtn = bp_gpio_dir_set(hndl, 0u, 5u, BP_GPIO_DIR_OUT);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 101 – Setting the direction of a GPIO pin.

16.4.2 Setting The State of a GPIO Pin
The state of a GPIO pin can be set using the bp_gpio_data_set() function. In Listing 102 an
example of setting a GPIO output to high, or 1 is shown. Note that the function will succeed and
attempt to set the state of the pin even when the GPIO pin is configured as an input pin. What happens
in this case depends on the GPIO peripheral. In many cases the state will be saved and the GPIO pin
will take that value if the GPIO direction is changed to be an output pin.

#include <gpio/bp_gpio.h>

int rtn;

// Set pin 5 of bank 0 to high.
rtn = bp_gpio_data_set(hndl, 0u, 5u, 1u);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 102 – Setting the state of a GPIO pin.

It’s also possible to toggle the state of a gpio pin as in Listing 103. This will flip the state from 0 to 1 or
1 to 0.

#include <gpio/bp_gpio.h>

int rtn;

rtn = bp_gpio_data_tog(hndl, 0u, 5u);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 103 – Toggling the state of a GPIO pin.

16.4.3 Reading The State of a GPIO Pin
Reading a GPIO pin is achieved by calling bp_gpio_data_get(). The GPIO driver will return the
actual pin state if supported. On some platforms it means that the state of the pin may be read even if
the pin is configured as an alternate peripheral other than a GPIO.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 16 General Purpose I/O (GPIO) 100

#include <gpio/bp_gpio.h>

int rtn;

// Variable that will receive the GPIO pin state.
uint32_t data;

rtn = bp_gpio_data_read(hndl, 0u, 5u, &data);
if(rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 104 – Reading the state of a GPIO pin.

16.5 Direct Access to the Driver
Like other I/O modules, it is possible to call a GPIO driver directly. This allows the application to access
driver specific features as well as slightly reduce the call overhead. In the case of other I/O drivers such
as UART and I2C, accessing the driver API directly meant that the call wasn’t thread-safe as the
top-level module provided the necessary mutex or semaphore. The GPIO drivers are slightly different in
that they are usually thread safe when accessing an MCU’s GPIO peripheral. An exception to this rule is
when accessing an external I/O expander in that case care should be taken.

An additional difference between the GPIO drivers and other I/O drivers is that GPIO drivers for the
MCU or SoC GPIOs can be called with a NULL handle. Again this is offered as an option to slightly
reduce the overhead of controlling GPIO pins and also because there is usually only one instance of the
platform’s GPIO driver. Note that again if accessing a GPIO driver for an external I/O expander then it is
necessary to use the instance’s driver handle.

16.5.1 Retrieving the Driver Handle
Retrieving the driver handle of a gpio instance can be performed using bp_gpio_drv_hndl_get()
as in Listing 105. In the example, if successful, the driver handle will be set in drv_hndl. That handle
can then be used to access the driver API.

#include <gpio/bp_gpio.h>

int rtn;

// Variable that will receive the driver handle.
bp_gpio_drv_hndl_t drv_hndl;

rtn = bp_gpio_drv_hndl_get(hndl, &drv_hndl);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 105 – Retrieving the driver handle from an GPIO module instance.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 16 General Purpose I/O (GPIO) 101

16.5.2 Calling a Driver API
Calling a driver API can be done using the driver handle and by including the driver header file.
Listing 106 shows an example of calling a driver API directly. For the purpose of the example, the intel
FPGA GPIO driver data toggle function is used, the call would be similar with other drivers.

#include <gpio/bp_gpio.h>
#include <soc_comp/intel_fpga/hps_gpio/bp_hps_gpio_drv.h>

int rtn;

rtn = bp_hps_gpio_drv_data_tog(drv_hndl, 0u, 5u);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 106 – Calling a GPIO driver directly.

In the previous example of Listing 106 the instance handle was used but since the driver in question is
the SoC’s GPIO peripheral driver it is also possible to use a NULL handle instead as in Listing 107. A
NULL handle is provided in the BP_GPIO_NULL_HNDL preprocessor macro.

#include <gpio/bp_gpio.h>
#include <soc_comp/intel_fpga/hps_gpio/bp_hps_gpio_drv.h>

int rtn;

rtn = bp_hps_gpio_drv_data_tog(BP_GPIO_NULL_HNDL, 0u, 5u);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 107 – Calling a GPIO driver directly with a NULL handle.

16.5.3 Alternative Driver Calling Method
In the previous section’s example, a driver function was called directly using its function name. For
driver specific functions, which are non-standard this is the only way possible. However for the
standard portion of the driver API, such as the lifecycle management functions and transfer functions, it
is also possible to use the driver API structure. This structure is declared in the driver header file, for
example to keep the same example as the last one, the driver structure is called g_bp_hps_gpio_drv.
Using it would look like the example in .

#include <gpio/bp_gpio.h>
#include <soc_comp/intel_fpga/hps_gpio/bp_hps_gpio_drv.h>

int rtn;

rtn = g_bp_hps_gpio_drv.data_tog(BP_GPIO_NULL_HNDL);
if (rtn != RTNC_SUCCESS) { /* Error management */ }

Listing 108 – Direct driver access example.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 16 General Purpose I/O (GPIO) 102

16.6 Conclusion
This concludes the chapter on the gpio module. The chapter went over creating and managing a gpio
module instance as well as reading, configuring and setting the state of GPIO pins. It was also
highlighted that the gpio module has a few unique features compared to other I/O modules. Namely
that the primary interface is non-blocking and can be used from interrupt service routines and critical
sections. Readers are encouraged to read the gpio module API reference for additional details on its
usage and other advanced features of the API. BASEplatform users should also take a look at the
Platform Reference Manual for their selected platform for addition information about their platform.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

17
API Reference Manual

Architecture
The architecture module, or ARCH module provides low-level CPU control functionalities as well as
important compiler abstractions. These include CPU interrupt flag manipulation, memory barriers,
endianness and compiler detection, alignment requirements, and more. The ARCH module is divided in
various ports specific to a CPU and compiler combination. When necessary, additional files and API
specific to certain CPU cores are also included in the ARCH module.

The current architecture and toolchain need to be selected at compile time by including the relevant
port’s header file in a master configuration file named bp_arch_def_cfg.h.

bp_irq_flag_tData Type

<bp_arch.h>

Type used to store the CPU interrupt status flag returned by bp_slock_acquire_irq_save() and
bp_critical_section_enter().

The value returned by those functions should not be manipulated by the application.

BP_ARCH_ADDR_SZMacro

<bp_arch.h>

Defined by the architecture port to the size of the addresses in bytes. Usually set to 4 on a 32-bit
platform and 8 on a 64-bit platform.

BP_ARCH_ALIGN_MAXMacro

<bp_arch.h>

Defined by the architecture port to the largest required alignment across all the fundamental data types.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 104

BP_ARCH_COMPILERMacro

<bp_arch.h>

Defined by the architecture port to the current compiler. The list of defined compilers can be found in
bp_arch_def.h.

BP_ARCH_CORE_ID_GET()Macro

<bp_arch.h>

Returns the CPU id of the current core. On single core platforms, BP_ARCH_CORE_ID_GET always returns
0.

BP_ARCH_CPUMacro

<bp_arch.h>

Defined by the architecture port to the current CPU architecture. The list of defined architectures can
be found in bp_arch_def.h.

BP_ARCH_DEBUG_BREAK()Macro

<bp_arch.h>

Inserts a software breakpoint. The current CPU core will break to the debugger if supported. The result
of hitting a software breakpoint with no debugger connected is platform specific but will usually trigger
a form of CPU fault or exception.

BP_ARCH_ENDIANMacro

<bp_arch.h>

Defined by the architecture port to the endianness of the current platform. The list of endianness
definitions can be found in bp_arch_def.h.

BP_ARCH_INT_DIS()Macro

<bp_arch.h>

core’s interrupts are disabled. The result can be assigned to a variable of type to save the current state
of the interrupt flags.

Critical sections such as bp_critical_section_enter() and bp_critical_section_exit()
or spinlocks, bp_slock_acquire_irq_save() and bp_slock_release_irq_restore() are
usually preferable to unconditionally disabling and enabling interrupts.

BP_ARCH_INT_EN()Macro

<bp_arch.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 105

Unconditionally enables CPU interrupts. On multi-core platforms only the current core’s interrupts are
enabled.

Critical sections such as bp_critical_section_enter() and bp_critical_section_exit()
or spinlocks, bp_slock_acquire_irq_save() and bp_slock_release_irq_restore() are
usually preferable to unconditionally disabling and enabling interrupts.

BP_ARCH_IS_CRIT()Macro

<bp_arch.h>

Returns a non-zero value if interrupts are disabled, i.e. inside a critical context.

BP_ARCH_IS_INT()Macro

<bp_arch.h>

Returns a non-zero value if called from within an interrupt service routine.

BP_ARCH_IS_INT_OR_CRIT()Macro

<bp_arch.h>

Returns a non-zero value if currently called from an interrupt service routine or if interrupts are disabled.

BP_ARCH_MB()Macro

<bp_arch.h>

Memory barrier.

BP_ARCH_PANIC()Macro

<bp_arch.h>

Panic, usually disables interrupts and breaks into an infinite loop or the debugger.

BP_ARCH_RMB()Macro

<bp_arch.h>

Read memory barrier, defaults to BP_ARCH_MB for architectures without a specific read memory barrier.

BP_ARCH_SEV()Macro

<bp_arch.h>

Send event. The BP_ARCH_SEV macro expands to the current architecture’s send event instruction used
for SMP signalling between cores. On architectures without any send event instruction this macro
expands to a no-op instruction.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 106

BP_ARCH_WFE()Macro

<bp_arch.h>

Wait for events. The BP_ARCH_WFE macro expands to the current architecture’s wait for event
instruction used for SMP signalling between cores. On architectures without any wait for event
instruction this macro expands to a no-op instruction.

The difference between a wait for event and a wait for interrupt is architecture dependent. In case
there is no dedicated wait for event instruction this macro expands to BP_ARCH_WFI.

BP_ARCH_WFI()Macro

<bp_arch.h>

Wait for interrupts. The BP_ARCH_WFI macro expands to the current architecture’s wait for interrupt
instruction. On architectures without any wait for interrupt instruction this macro expands to a no-op
instruction.

BP_ARCH_WMB()Macro

<bp_arch.h>

Write memory barrier, defaults to BP_ARCH_MB for architectures without a specific write memory barrier.

Cache Management
The cache management module enables drivers and applications to perform cache maintenance
operations in a platform-independent manner. The various cache maintenance functions can be used to
ensure cache coherency when handling hardware buffers, shared memory and similar operations with
non-coherent masters in a SoC.

All the maintenance functions, regardless of the implementation, includes a suitable memory barrier at
the start and at the end of all the cache maintenance operations. This applies even if a length of zero is
passed to functions operating on a range as well as on platforms with no caches or with cache disabled.

The cache operations are not atomic and won’t disable interrupts unless required by the platform. If a
cache operation must not be interrupted, a critical section or spinlock should be used around the call.
The cache operations are, however, thread-safe and re-entrant which means they can be used in parallel
without issues.

Cache operations can take a considerable amount of time depending on the range, state of the cache
and CPU/RAM performance. While they are marked as non-blocking, care should be taken not to
perform excessively long operations from within an interrupt or a critical context.

bp_cache_dcache_inv_all()Function

<bp_cache.h>

Invalidates the entire data cache. The entire data cache hierarchy and unified caches will be invalidated.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 107

Invalidating the cache means clearing entries from the cache without writing them to main memory if
dirty.

Prototype void bp_cache_dcache_inv_all ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

bp_cache_dcache_max_line_get()Function

<bp_cache.h>

Returns the largest effective data cache line size. Usually this would be the largest cache line size in the
data cache hierarchy.

The special value 0 is returned when no cache is present or if the data cache line size is unknown.

Caches are usually assumed to be fully enabled. The return value of this function reflects the largest
data cache line size as if the entire data cache hierarchy was enabled.

Prototype uint32_t bp_cache_dcache_max_line_get ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

Largest data cache line size in bytes if known, 0 otherwise.

bp_cache_dcache_min_line_get()Function

<bp_cache.h>

Returns the smallest effective data cache line size. Usually this would be the smallest cache line size in
the data cache hierarchy.

The special value 0 is returned when no cache is present or if the data cache line size is unknown.

Caches are usually assumed to be fully enabled. The return value of this function reflects the smallest
data cache line size as if the entire data cache hierarchy was enabled.

When considering the minimum alignment of DMA buffers, the largest cache line size should usually be
used. See bp_cache_dcache_max_line_get()

Prototype uint32_t bp_cache_dcache_min_line_get ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 108

Returned
Values

Smallest cache line size in bytes if known, 0 otherwise.

bp_cache_dcache_range_clean()Function

<bp_cache.h>

Cleans an address range from the data cache.

A start address unaligned to a cache line will be truncated to be aligned with the next lowest cache line.

A length which is not a multiple of the cache line size will be rounded up to the next multiple of the
cache line size.

Cleaning the cache means writing the dirty cache lines but keeping them stored in the cache.

This function cannot fail and supports cleaning from address 0. Calling
bp_cache_dcache_range_clean() with a len of 0 will have no effect other than executing a
memory barrier.

Prototype void bp_cache_dcache_range_clean (void * p_addr,
size_t len);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_addr Start of the address range.
len Length of the range to clean in bytes.

bp_cache_dcache_range_cleaninv()Function

<bp_cache.h>

Cleans and invalidates an address range from the data cache.

A start address unaligned to a cache line will be truncated to be aligned with the next lowest cache line.

A length which is not a multiple of the cache line size will be rounded up to the next multiple of the
cache line size.

Combines operation of both bp_cache_dcache_range_clean() and
bp_cache_dcache_range_inv() in one call. Some platforms may have optimized way of
performing the combined operation.

It should not be assumed that the clean and invalidate operation are atomic between each other.

This function cannot fail and supports cleaning from address 0. Calling
bp_cache_dcache_range_cleaninv() with a len of 0 will have no effect other than executing a
memory barrier.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 109

Prototype void bp_cache_dcache_range_cleaninv (void * p_addr,
size_t len);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_addr Start of the address range.
len Length of the range to clean and invalidate in bytes.

bp_cache_dcache_range_inv()Function

<bp_cache.h>

Invalidates an address range from the data cache.

A start address unaligned to a cache line will be truncated to be aligned with the next lowest cache line.

A length which is not a multiple of the cache line size will be rounded up to the next multiple of the
cache line size.

Invalidating the cache means clearing entries from the cache without writing them to main memory if
dirty.

This function cannot fail and supports cleaning from address 0. Calling
bp_cache_dcache_range_inv() with a len of 0 will have no effect other than executing a memory
barrier.

Prototype void bp_cache_dcache_range_inv (void * p_addr,
size_t len);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_addr Start of the address range.
len Length of the range to invalidate in bytes.

bp_cache_icache_inv_all()Function

<bp_cache.h>

Cleans the entire instruction cache. bp_cache_icache_inv_all() will clean the entire instruction
cache hierarchy.

bp_cache_icache_inv_all() will not invalidate unified caches when present. It is the caller’s
responsibility of correctly handling any code that could be stored in the unified cache(s).

Invalidating the cache means clearing entries from the cache without writing them to main memory if
dirty.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 110

Prototype void bp_cache_icache_inv_all ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Spinlocks
The spinlock module, shortened to slock, provides spinlocks and critical sections enabling atomic
operations on both uni-processor and symmetric multiprocessor systems.

On uni-processor systems, the spinlocks reduces to simple critical sections, as such they can be used to
write code compatible with both uni- and multi-processor.

bp_critical_section_enter()Function

<bp_slock.h>

Enters a critical section, disabling the interrupts and returning the CPU’s interrupt flag state prior to the
call to bp_critical_section_enter(). An appropriate memory barrier will be executed by the
implementation to ensure proper synchronization.

The exact return value is implementation specific and should not be manipulated by the calling code.

bp_critical_section_enter() and bp_critical_section_exit() are compatible with
bare-metal, single core RTOS and SMP RTOSes and can be used as a simpler alternative to spinlocks.
However for maximum performance under SMP RTOSes, spinlocks are recommended.

Prototype bp_irq_flag_t bp_critical_section_enter ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

Interrupt status flag prior to calling bp_critical_section_enter().

bp_critical_section_exit()Function

<bp_slock.h>

Exits a critical section, restoring the interrupt state from the flag argument. An appropriate memory
barrier will be executed by the implementation to ensure proper synchronization.

The exact values that flag can take is implementation specific and should not be manipulated by the
calling code. The result of passing any value except one returned by a previous call to
bp_critical_section_enter() is undefined.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 111

bp_critical_section_enter() and bp_critical_section_exit() are compatible with
bare-metal, single core RTOS and SMP RTOSes and can be used as a simpler alternative to spinlocks.
However for maximum performance under SMP RTOSes, spinlocks are recommended.

Prototype void bp_critical_section_exit ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

bp_slock_acquire()Function

<bp_slock.h>

Acquires a spinlock. Under an SMP RTOS, bp_slock_acquire() will busy wait (spin) until the lock is
available. In a single core system bp_slock_acquire() will be reduced to a memory barrier.

Note that bp_slock_acquire() will not disable interrupts which is necessary to guarantee atomicity
and prevent deadlocks. bp_slock_acquire_irq_save() and bp_slock_acquire_irq_dis()
can be used instead when interrupts need to be disabled.

Prototype void bp_slock_acquire (bp_slock_t * p_lock);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_lock Pointer to the spinlock.

bp_slock_acquire_irq_dis()Function

<bp_slock.h>

Acquires a spinlock and disables interrupts. Under an SMP RTOS, bp_slock_acquire_irq_dis()
will busy wait (spin) until the lock is available. In a single core system bp_slock_acquire_irq_dis()
will disable interrupts and execute a memory barrier to enforce synchronization.

bp_slock_acquire_irq_dis() and bp_slock_release_irq_en() used in pairs will
unconditionally disable and enable interrupts on entry and exit of the critical section. They can be used
as a leaner version of spinlocks when saving the interrupt flag state is unnecessary. Otherwise
bp_slock_acquire_irq_save() and bp_slock_release_irq_restore() should be used
when calling from within a critical section where interrupts could be disabled.

Prototype void bp_slock_acquire_irq_dis (bp_slock_t * p_lock);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 112

Parameters p_lock Pointer to the spinlock.

bp_slock_acquire_irq_save()Function

<bp_slock.h>

Acquires a spinlock, disables interrupts and returns the CPU’s interrupt flag state. Under an SMP RTOS,
bp_slock_acquire_irq_save() will busy wait (spin) until the lock is available. In a single core
system bp_slock_acquire_irq_save() will disable the interrupts and return the interrupt status
flag as well as executing a memory barrier to enforce synchronization.

The exact return value is implementation specific and should not be manipulated by the calling code.

Prototype bp_irq_flag_t bp_slock_acquire_irq_save (bp_slock_t * p_lock);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_lock Pointer to the spinlock.

Returned
Values

Interrupt status flag prior to calling bp_slock_acquire_irq_save().

bp_slock_release()Function

<bp_slock.h>

Releases a spinlock. Under an SMP RTOS, bp_slock_release() will release the spinlock and signal
other cores which may be waiting on the lock. In a single core system bp_slock_release() will be
reduced to a memory barrier.

Prototype void bp_slock_release (bp_slock_t * p_lock);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_lock Pointer to the spinlock.

bp_slock_release_irq_en()Function

<bp_slock.h>

Releases a spinlock and enables interrupts. Under an SMP RTOS, bp_slock_release_irq_en() will
release the spinlock and signal other cores which may be waiting on the lock. In a single core system
bp_slock_release_irq_en() will enable interrupts and execute a memory barrier to enforce
synchronization.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 113

bp_slock_acquire_irq_dis() and bp_slock_release_irq_en() in a pair will unconditionally
disable and enable interrupts on entry and exit of the critical section. They can be used as a leaner
version of spinlocks when saving the interrupt flag state is unnecessary. Otherwise
bp_slock_acquire_irq_save() and bp_slock_release_irq_restore() should be used
when calling from within a critical section where interrupts are disabled.

Prototype void bp_slock_release_irq_en (bp_slock_t * p_lock);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 7 3

Parameters p_lock Pointer to the spinlock.

bp_slock_release_irq_restore()Function

<bp_slock.h>

Releases a spinlock and restores the interrupt state. Under an SMP RTOS,
bp_slock_release_irq_restore() will release the spinlock and signal other cores which may be
waiting on the lock. In a single core system bp_slock_release_irq_restore() will restore the
interrupts as well as execute a memory barrier to enforce synchronization.

The exact values that flag can take is implementation specific and should not be manipulated by the
calling code. The result of passing any value except one returned by a previous call to
bp_slock_acquire_irq_save() is undefined.

Prototype void bp_slock_release_irq_restore (bp_slock_t * p_lock,
bp_irq_flag_t flag);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_lock Pointer to the spinlock.
flag Saved interrupt flag to restore.

bp_slock_tData Type

<bp_slock.h>

Spinlock datatype. Any spinlock variable should be cleared by setting them* to 0 prior to use.

Time
The time module is responsible for the system’s primary timebase as well as providing high resolution
time delays and time measurements. It is also the time base used by the generic timer module.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 114

When running with an RTOS, the time module usually provides the kernel reference tick, with support
for dynamic or tickless mode for RTOSes that supports it.

Additionally, when running within and RTOS, the time delays provided by the time module are
implemented independently of the kernel software timers and delays. As such, they usually support a
higher resolution than the kernel offers and can be used where fine timing is required.

bp_time_freq_get()Function

<bp_time.h>

Returns the frequency of the primary time base.

This function cannot fail and in normal operation should always return a non-zero value. In special cases
where the frequency is unknown, 0 is returned.

Prototype uint32_t bp_time_freq_get ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

Frequency of the primary time base in hertz.

bp_time_get()Function

<bp_time.h>

Returns the raw value of the primary time base counter.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, 0 is returned.

Prototype uint64_t bp_time_get ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

Raw 64-bit value of the primary counter.

bp_time_get32()Function

<bp_time.h>

Returns the raw value of the primary time base counter, 32-bit version. The value returned is the same
as would result from truncating the returned value of bp_time_get() to the least significant 32 bits.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 115

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, 0 is returned.

Prototype uint32_t bp_time_get32 ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

Raw 32-bit value of the primary counter.

bp_time_get_ms()Function

<bp_time.h>

Returns the current value of the primary time base counter in milliseconds.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, 0 is returned.

Prototype uint64_t bp_time_get_ms ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

64-bit counter value in milliseconds.

bp_time_get_ms32()Function

<bp_time.h>

Returns the current value of the primary time base counter in milliseconds, 32-bit version.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, 0 is returned.

Prototype uint32_t bp_time_get_ms32 ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

32-bit counter value in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 116

bp_time_get_ns()Function

<bp_time.h>

Returns the current value of the primary time base counter in nanoseconds.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, 0 is returned.

Prototype uint64_t bp_time_get_ns ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

64-bit counter value in nanoseconds.

bp_time_get_ns32()Function

<bp_time.h>

Returns the current value of the primary time base counter in nanoseconds. 32-bit version.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, 0 is returned.

Prototype uint32_t bp_time_get_ns32 ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

32-bit counter value in nanoseconds.

bp_time_halt()Function

<bp_time.h>

Halts the primary time base. The primary timebase is halted until bp_time_resume() is called.

Halting and resuming the primary time base should be done for testing and debugging purpose only.

Prototype int bp_time_halt ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 117

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_init()Function

<bp_time.h>

Initializes the time module and the primary time base.

bp_time_init() should be called before any other services that is dependent on the system
timebase are used.

bp_time_init() should only be called once. The result of subsequent calls after the first is undefined.

Prototype int bp_time_init ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_ms_to_raw()Function

<bp_time.h>

Converts milliseconds to the raw time base unit.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, 0 is returned.

Prototype uint64_t bp_time_ms_to_raw ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters

Returned
Values

Time value in the raw time base unit.

bp_time_ms_to_raw32()Function

<bp_time.h>

Converts milliseconds to the raw time base unit, 32-bit version.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 118

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, 0 is returned.

Prototype uint32_t bp_time_ms_to_raw32 (uint32_t time_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters time_ms Time value in milliseconds.

Returned
Values

Time value in the raw time base unit.

bp_time_ns_to_raw()Function

<bp_time.h>

Converts nanoseconds to the raw time base unit.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, 0 is returned.

Prototype uint64_t bp_time_ns_to_raw (uint64_t time_ns);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters time_ns Time value in milliseconds.

Returned
Values

Time value in the raw time base unit.

bp_time_ns_to_raw32()Function

<bp_time.h>

Converts nanoseconds to the raw time base unit, 32-bit version.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, 0 is returned.

Prototype uint32_t bp_time_ns_to_raw32 (uint32_t time_ns);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 119

Parameters time_ns Time value in milliseconds.

Returned
Values

Time value in the raw time base unit.

bp_time_raw_to_ms()Function

<bp_time.h>

Converts a time value from the raw time base unit to milliseconds.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, 0 is returned.

Prototype uint64_t bp_time_raw_to_ms (uint64_t time_raw);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters time_raw Time value in the unit of the system time base.

Returned
Values

Time value in milliseconds.

bp_time_raw_to_ms32()Function

<bp_time.h>

Converts a time value in the raw time base unit to milliseconds, 32-bit version.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, 0 is returned.

Prototype uint32_t bp_time_raw_to_ms32 (uint32_t time_raw);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters time_raw Time value in the unit of the system time base.

Returned
Values

Time value in milliseconds.

bp_time_raw_to_ns()Function

<bp_time.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 120

Converts a time value in the raw time base unit to nanoseconds.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, 0 is returned.

Prototype uint64_t bp_time_raw_to_ns (uint64_t time_raw);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters time_raw Time value in the unit of the system time base.

Returned
Values

Time value in nanoseconds.

bp_time_raw_to_ns32()Function

<bp_time.h>

Converts a time value in the raw time base unit to nanoseconds, 32-bit version.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, 0 is returned.

Prototype uint32_t bp_time_raw_to_ns32 (uint32_t time_raw);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters time_raw Time value in the unit of the system time base.

Returned
Values

Time value in nanoseconds.

bp_time_resume()Function

<bp_time.h>

Resumes the primary time base. Resumes the primary time base from where it was stopped by
bp_time_halt(). The result of calling resume when the timebase isn’t halted is undefined.

Halting and resuming the primary time base should be done for testing and debugging purpose only.

Prototype int bp_time_resume ();

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 121

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep()Function

<bp_time.h>

Sleeps for a specified amount of time in the platform’s raw timebase unit.

The wait method is chosen by the underlying implementation and will usually be a busy loop for small
delays and a timer interrupt for larger delays.

The amount of time slept is guaranteed to be at least the specified amount.

bp_time_sleep() should not be called from an interrupt service routine or with the interrupts
disabled. bp_time_sleep_busy() should be used instead. However long delays within interrupt
service routines or critical section could have a negative impact on the system performance and should
be used sparingly.

Prototype int bp_time_sleep (uint64_t time_raw);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters time_raw Amount of time to sleep in the platform’s raw timebase unit.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep32()Function

<bp_time.h>

Sleeps for a specified amount of time in the platform’s raw timebase unit, 32-bit version.

The wait method is chosen by the underlying implementation and will usually be a busy loop for small
delays and a timer interrupt for larger delays.

The amount of time slept is guaranteed to be at least the specified amount.

bp_time_sleep32() should not be called from an interrupt service routine or with the interrupts
disabled. bp_time_sleep_busy32() should be used instead. However long delays within interrupt
service routines or critical section could have a negative impact on the system performance and should
be used sparingly.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 122

Prototype int bp_time_sleep32 (uint32_t time_raw);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters time_raw Amount of time to sleep in the platform’s raw timebase unit.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep_busy()Function

<bp_time.h>

Busy wait for a specified amount of time.

Contrary to bp_time_sleep(), bp_time_sleep_busy() will always perform a busy loop for short
and long delays. As such bp_time_sleep_busy() can always be called from an interrupt service
routine or with the interrupts disabled.

Interrupts are not disabled while waiting unless they are disabled prior to calling
bp_time_sleep_busy().

The amount of time slept is guaranteed to be at least the specified amount.

Long busy delays should usually be avoided, especially when running under an RTOS.

Prototype int bp_time_sleep_busy (uint64_t time_raw);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters time_raw Amount of time to sleep in the raw timebase unit.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep_busy32()Function

<bp_time.h>

Busy wait for a specific amount of time, 32-bit version.

Contrary to bp_time_sleep(), bp_time_sleep_busy32() will always perform a busy loop for
short and long delays. As such bp_time_sleep_busy32() can always be called from an interrupt
service routine or with the interrupts disabled.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 123

Interrupts are not disabled while waiting unless they are disabled prior to calling
bp_time_sleep_busy32().

The amount of time slept is guaranteed to be at least the specified amount.

Long busy delays should usually be avoided, especially when running under an RTOS.

Prototype int bp_time_sleep_busy32 (uint32_t time_raw);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters time_raw Amount of time to sleep in the raw timebase unit.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep_busy_ms()Function

<bp_time.h>

Busy wait for a specific amount of time in milliseconds.

Contrary to bp_time_sleep(), bp_time_sleep_busy_ms() will always perform a busy loop for
short and long delays. As such bp_time_sleep_busy_ms() can always be called from an interrupt
service routine or with the interrupts disabled.

Interrupts are not disabled while waiting unless they are disabled prior to calling
bp_time_sleep_busy_ms().

The amount of time slept is guaranteed to be at least the specified amount.

Long busy delays should usually be avoided, especially when running under an RTOS.

Prototype int bp_time_sleep_busy_ms (uint32_t time_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters time_ms Amount of time to sleep in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 124

bp_time_sleep_busy_ns()Function

<bp_time.h>

Busy wait for a specific amount of time in nanoseconds.

Contrary to bp_time_sleep(), bp_time_sleep_busy_ns() will always perform a busy loop for
short and long delays. As such bp_time_sleep_busy_ns() can always be called from an interrupt
service routine or with the interrupts disabled.

Interrupts are not disabled while waiting unless they are disabled prior to calling
bp_time_sleep_busy_ns().

The amount of time slept is guaranteed to be at least the specified amount.

Long busy delays should usually be avoided, especially when running under an RTOS.

Prototype int bp_time_sleep_busy_ns (uint32_t time_ns);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters time_ns Amount of time to sleep in nanoseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep_ms()Function

<bp_time.h>

Sleeps for a specified amount of time in milliseconds.

The wait method is chosen by the underlying implementation and will usually be a busy loop for small
delays and a timer interrupt for larger delays.

The amount of time slept is guaranteed to be at least the specified amount.

bp_time_sleep_ms() should not be called from an interrupt service routine or with the interrupts
disabled. bp_time_sleep_busy_ms() should be used instead. However long delays within interrupt
service routines or critical section could have a negative impact on the system performance and should
be used sparingly.

Prototype int bp_time_sleep_ms (uint32_t time_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 125

Parameters time_ms Amount of time to sleep in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep_ns()Function

<bp_time.h>

Sleeps for a specified amount of time in nanoseconds.

The wait method is chosen by the underlying implementation and will usually be a busy loop for small
delays and a timer interrupt for larger delays.

The amount of time slept is guaranteed to be at least the specified amount.

bp_time_sleep_ns() should not be called from an interrupt service routine or with the interrupts
disabled. bp_time_sleep_busy_ns() should be used instead. However long delays within interrupt
service routines or critical section could have a negative impact on the system performance and should
be used sparingly.

Prototype int bp_time_sleep_ns (uint32_t time_ns);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters time_ns Amount of time to sleep in nanoseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep_yield()Function

<bp_time.h>

Yields and wait for a specific amount of time in the raw timebase unit.

Contrary to bp_time_sleep(), bp_time_sleep_yield() will always perform an interrupt based
delay even for small delays. When running with an RTOS it is guaranteed to generate a context switch.

bp_time_sleep_yield() must not be called from an interrupt service routine or with the interrupts
disabled.

The amount of time slept is guaranteed to be at least the specified amount.

Prototype int bp_time_sleep_yield (uint64_t time_raw);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 126

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters time_raw Amount of time to sleep in the raw timebase unit.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep_yield32()Function

<bp_time.h>

Yields and wait for a specific amount of time, 32-bit version.

Contrary to bp_time_sleep32(), bp_time_sleep_yield32() will always perform an interrupt
based delay even for small delays. When running with an RTOS it is guaranteed to generate a context
switch.

bp_time_sleep_yield32() must not be called from an interrupt service routine or with the
interrupts disabled.

The amount of time slept is guaranteed to be at least the specified amount.

Prototype int bp_time_sleep_yield32 (uint32_t time_raw);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters time_raw Amount of time to sleep in the raw timebase unit.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep_yield_ms()Function

<bp_time.h>

Yields and wait for a specific amount of time in milliseconds.

Contrary to bp_time_sleep_ms(), bp_time_sleep_yield_ms() will always perform an interrupt
based delay even for small delays. When running with an RTOS it is guaranteed to generate a context
switch.

bp_time_sleep_yield_ms() must not be called from an interrupt service routine or with the
interrupts disabled.

The amount of time slept is guaranteed to be at least the specified amount.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 127

Prototype int bp_time_sleep_yield_ms (uint32_t time_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters time_ms Amount of time to sleep in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_time_sleep_yield_ns()Function

<bp_time.h>

Yields and wait for a specific amount of time in nanoseconds.

Contrary to bp_time_sleep(), bp_time_sleep_yield_ns() will always perform an interrupt
based delay even for small delays. When running with an RTOS it is guaranteed to generate a context
switch.

bp_time_sleep_yield_ns() must not be called from an interrupt service routine or with the
interrupts disabled.

The amount of time slept is guaranteed to be at least the specified amount.

Prototype int bp_time_sleep_yield_ns (uint32_t time_ns);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters time_ns Amount of time to sleep in nanoseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

Timers
The timer module offers generic high resolution timers based on a hardware time base provided by the
time module. Being independent of any RTOS the timers are available across all platforms supported by
the BASEplatform, including bare-metal. In addition, being derived from the primary timebase, the
generic timer’s resolution is usually higher than the kernel’s software timers.

bp_timer_create()Function

<bp_timer.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 128

Creates a new timer. When successful the newly created timer handle is returned through the p_hndl
argument.

When returning with an RTNC_NO_RESOURCE error, it is guaranteed that no resource has been
permanently allocated to prevent leaking.

Prototype int bp_timer_create (bp_timer_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_hndl Pointer to the returned timer handle.

Returned
Errors

RTNC_SUCCESS
RTNC_NO_RESOURCE
RTNC_FATAL

bp_timer_destroy()Function

<bp_timer.h>

Destroys a timer. The timer is either returned to a pool of timers that can be reused or freed if the
memory allocator allows freeing memory.

Prototype int bp_timer_destroy (bp_timer_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the timer to destroy.

Returned
Errors

RTNC_SUCCESS
RTNC_NO_RESOURCE
RTNC_FATAL

bp_timer_halt()Function

<bp_timer.h>

Halts the BASEplatform timer processing. This function should be used for testing and debugging only
to temporarily halt timer processing until bp_timer_resume() is called.

Prototype int bp_timer_halt ();

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 129

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_init()Function

<bp_timer.h>

Initializes the timer facility. bp_timer_init() should be called before any other services that are
dependent on the timers are used. In most cases, the time module should be initialized before the timer
module. See bp_time_init() for details.

bp_timer_init() should only be called once. The result of subsequent calls after the first is
undefined.

Prototype int bp_timer_init ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_restart()Function

<bp_timer.h>

Restarts a timer. The timer will be restarted and set to expire after time_raw has passed in the system’s
primary timebase from the last time it expired. Upon expiration, the original callback will be called.

To start a timer from the current time instead of the last expiration bp_timer_start() should be
used.

Prototype int bp_timer_restart (bp_timer_hndl_t hndl,
uint64_t time_raw,
void * p_arg);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the timer to restart.
time_raw Time to wait in the raw timebase unit.
p_arg Optional argument passed to the timer callback.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 130

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_restart_ms()Function

<bp_timer.h>

Restarts a timer. The timer will be started and set to expire after time_ms milliseconds has passed from
the last time it expired. Upon expiration, the original callback will be called.

To start a timer from the current time instead of the last expiration bp_timer_start_ms() should be
used.

Prototype int bp_timer_restart_ms (bp_timer_hndl_t hndl,
uint32_t time_ms,
void * p_arg);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the timer to restart.
time_ms Time to wait in milliseconds.
p_arg Optional argument passed to the timer callback.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_restart_ns()Function

<bp_timer.h>

Restarts a timer. The timer will be started and set to expire after time_ns nanoseconds has passed
from the last time it expired. Upon expiration, the original callback will be called.

To start a timer from the current time instead of the last expiration bp_timer_start_ns() should be
used.

Prototype int bp_timer_restart_ns (bp_timer_hndl_t hndl,
uint32_t time_ns,
void * p_arg);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the timer to restart.
time_ns Time to wait in nanoseconds.
p_arg Optional argument passed to the timer callback.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 131

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_resume()Function

<bp_timer.h>

Resumes the BASEplatform timer processing. This function should be used for testing and debugging
only to resume timer processing after a call to bp_timer_halt().

Prototype int bp_timer_resume ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_start()Function

<bp_timer.h>

Starts a timer. The timer will be started and set to expire after the specified amount of time has passed
on the system raw timebase. Upon expiration p_callback will be called with p_arg passed as an
optional argument.

See bp_timer_cb_t for details about the callback functionality.

Prototype int bp_timer_start (bp_timer_hndl_t hndl,
uint64_t time_raw,
void * p_arg);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the timer to start.
time_raw Timer delay in the raw timebase unit.
p_arg Optional argument passed to the timer callback.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_start_ms()Function

<bp_timer.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 132

Starts a timer. The timer will be started and set to expire after time_ms has passed in milliseconds.
Upon expiration p_callback will be called with p_arg passed as an optional argument.

See bp_timer_cb_t for details about the callback functionality.

Prototype int bp_timer_start_ms (bp_timer_hndl_t hndl,
uint32_t time_ms,
void * p_arg);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the timer to start.
time_ms Timer delay in milliseconds.
p_arg Optional argument passed to the timer callback.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_start_ns()Function

<bp_timer.h>

Starts a timer. The timer will be started and set to expire after time_ns has passed in nanoseconds.
Upon expiration p_callback will be called with p_arg passed as an optional argument.

See bp_timer_cb_t for details about the callback functionality.

Prototype int bp_timer_start_ns (bp_timer_hndl_t hndl,
uint32_t time_ns,
void * p_arg);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the timer to start.
time_ns Timer delay in nanoseconds.
p_arg Optional argument passed to the timer callback.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_stop()Function

<bp_timer.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 133

Stops a timer. The timer will be stopped without calling its expiration callback. If the timer is not started
or has expired already bp_timer_stop() will return RTNC_SUCCESS without affecting the timer.

Prototype int bp_timer_stop (bp_timer_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the timer to stop.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_target_get()Function

<bp_timer.h>

Returns the timer target in the raw timebase unit. If successful the timer’s target expiration time is
returned through p_target;

Prototype int bp_timer_target_get (bp_timer_hndl_t hndl,
uint64_t * p_target);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the timer to query.
p_target Pointer to the returned target time.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_action_tData Type

<bp_timer.h>

Action that can be returned from a timer’s callback function. See bp_timer_cb_t for details.

Values

BP_TIMER_STOP Stops the timer.

BP_TIMER_PERIODIC Restarts a timer with the same settings counting from the last timer ex-
piry.

BP_TIMER_RESTART Restarts a timer with new settings.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 134

bp_timer_cb_tData Type

<bp_timer.h>

Timer callback function signature type. The hndl argument is a handle to the expired timer. The
argument p_arg is set when creating the timer, see bp_timer_create() for details.

Three actions are possible when returning.

• BP_TIMER_STOP Stops the timer, removing it from the active timer list.
• BP_TIMER_PERIODIC Restart the timer using the same settings starting from the last timer

expiry.
• BP_TIMER_RESTART Restart the timer with new settings.

Prototype bp_timer_action_t bp_timer_cb_t (bp_timer_hndl_t hndl,
void * p_arg);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl
p_arg Callback argument set when creating the timer.

Returned
Values

Action of type bp_timer_action_t to perform with the timer once returning.

bp_timer_hndl_tData Type

<bp_timer.h>

Timer handle. Returned by bp_timer_create(). The pointer contained in the handle is private and
should not be accessed by calling code.

Members

p_tmr bp_timer_t * Pointer to the internal timer structure.

Platform Clocks
The clock module offers a unified clock control interface to other BASEplatform modules and drivers as
well as the application across different platforms. This enables drivers and application code to be aware
of core and peripherals clock speed, state and control clock gating using a portable API.

The mapping of clock id and clock gates is SoC specific, details can be found in the platform’s
documentation.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 135

bp_clock_core_freq_get()Function

<bp_clock.h>

Returns the current clock frequency of the CPU core if known. If the core frequency is unknown or
cannot be determined 0 is returned.

Prototype uint32_t bp_clock_core_freq_get ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

Core clock frequency if known, 0 otherwise.

bp_clock_dis()Function

<bp_clock.h>

Disables a clock gate.

Disabling an already disabled clock should be without side effects.

Clock and gate id are implementation specific, the list of clocks and gates can be found in the platform’s
documentation.

It is implementation defined whether or not a clock and gate id with the same numerical value
corresponds to the same clock line.

Prototype int bp_clock_dis (int clock_gate_id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters clock_gate_id Clock gate id of the clock gate to disable.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_clock_en()Function

<bp_clock.h>

Enables a clock gate.

Enabling an already enabled clock should be without side effects.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 136

Clocks and gates id are implementation specific, the clock and gate lines can be found in the platform’s
documentation.

It is implementation defined whether or not a clock and gate id with the same numerical value
corresponds to the same clock line.

Prototype int bp_clock_en (int clock_gate_id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters clock_gate_id Clock gate id of the clock gate to enable.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_clock_freq_get()Function

<bp_clock.h>

Returns the clock frequency of clock clock_id when known, otherwise 0 is returned.

When a clock is gated, bp_clock_freq_get() will return the clock frequency as if the clock wasn’t
gated, if possible, instead of 0. bp_clock_is_en() can be called to query if the clock is gated or not.

Clocks and gates id are implementation specific, the clock and gate mapping can be found in the
platform’s documentation.

It is implementation defined whether or not a clock and gate id with the same numerical value
corresponds to the same clock line.

Prototype int bp_clock_freq_get (int clock_id,
uint32_t * p_freq);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters clock_id Clock id of the clock to query.
p_freq Returned frequency in hertz.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_clock_gate_id_is_valid()Function

<bp_clock.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 137

Checks if a clock gate id is valid for the current platform. The validity of the clock gate id is returned as
the function return value for brevity since the function cannot fail.

Prototype bool bp_clock_gate_id_is_valid (clock_id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters clock_id Clock gate id to check.

Returned
Values

true if the clock gate id is valid, false otherwise.

bp_clock_id_is_valid()Function

<bp_clock.h>

Checks if a clock id is valid for the current platform. The validity of the clock id is returned as the
function return value for brevity since the function cannot fail.

Prototype bool bp_clock_id_is_valid (int clock_id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters clock_id Clock id to check.

Returned
Values

true if the clock id is valid, false otherwise.

bp_clock_is_en()Function

<bp_clock.h>

Returns the enabled or disabled state of a clock gate.

Clocks and gates id are implementation specific, the list of clocks and gate lines can be found in the
platform’s documentation.

It is implementation defined whether or not a clock and gate id with the same numerical value
corresponds to the same clock line.

Prototype int bp_clock_is_en (int clock_gate_id,
bool * p_state);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 138

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters clock_gate_id Clock gate id of the clock gate to query.
p_state Returned state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

Platform Resets
The reset module provides a unified reset interface to other BASEplatform modules and drivers as well
as the application. This enables drivers and application code to control peripheral reset lines using a
portable API.

Peripheral reset ids are platform specific, the exact mapping can be found in the platform
documentation.

Not all platforms have a way to control individual peripheral reset lines. With those platforms the API
calls are still defined but have no effect.

bp_periph_reset_assert()Function

<bp_reset.h>

Asserts a peripheral reset.

Asserting an already asserted reset lines should be without side effects.

Peripheral reset ids are implementation specific, the list of reset lines can be found in the platform’s
documentation.

Prototype int bp_periph_reset_assert (int periph_reset_id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters periph_reset_id Peripheral reset line id to assert.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_periph_reset_deassert()Function

<bp_reset.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 139

Deasserts a peripheral reset.

Deasserting an already deasserted reset lines should be without side effects.

Peripheral reset ids are implementation specific, the list of peripheral reset lines can be found in the
platform’s documentation.

Prototype int bp_periph_reset_deassert (int periph_reset_id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters periph_reset_id Peripheral reset line id to deassert.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_periph_reset_id_is_valid()Function

<bp_reset.h>

Checks if a peripheral reset id is valid for the current platform. The validity of the reset
periph_reset_id is returned as the function return value for brevity since the function cannot fail.

Prototype bool bp_periph_reset_id_is_valid (int periph_reset_id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters periph_reset_id Peripheral reset id to check.

Returned
Values

true if the peripheral reset id is valid, false otherwise.

bp_periph_reset_is_asserted()Function

<bp_reset.h>

Returns the state of a peripheral reset line. If successful, the state of the reset line periph_reset_id
will be returned through p_is_asserted.

Peripheral reset ids are implementation specific, the list of peripheral reset lines can be found in the
platform’s documentation.

Prototype int bp_periph_reset_is_asserted (int periph_reset_id,
bool * p_is_asserted);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 140

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters periph_reset_id Peripheral reset line id to query.
p_is_asserted Pointer to the returned state, set to true if the peripheral is

in reset, false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

Interrupt Management
The interrupt management module handles the platform’s interrupt controller as well as the list of
interrupt service routines, also known as interrupt handlers.

By default, interrupts are initialized to their lowest priority. The interrupt default type, either edge or
level, as well as its default polarity are implementation dependent.

When registering an interrupt, it is automatically configured to target the current core on multi-core
architectures.

bp_int_arg_get()Function

<bp_int.h>

Returns the argument of the current interrupt.

Prototype void * bp_int_arg_get ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

Argument of the current interrupt.

bp_int_dis()Function

<bp_int.h>

Disables the interrupt controller. This function should be used for testing and debugging only. The
interrupt controller is usually enabled automatically after it is initialized and stays enabled permanently
until the platform is shutdown or reset. To temporarily disable and re-enable interrupts the architecture
interrupt disable functions should be used. See BP_ARCH_INT_DIS and BP_ARCH_INT_EN for details.

To enable or disable a single interrupt id use bp_int_src_en() and bp_int_src_dis().

Prototype int bp_int_dis ();

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 141

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_en()Function

<bp_int.h>

Enables the interrupt controller. This function should be used for testing and debugging only. The
interrupt controller is usually enabled automatically after it is initialized and stays enabled permanently
until a platform shutdown or reset is performed. To temporarily disable and re-enable interrupts the
architecture interrupt disable functions should be used. See BP_ARCH_INT_DIS and BP_ARCH_INT_EN
for details.

To enable or disable a single interrupt id use bp_int_src_en() and bp_int_src_dis().

Prototype int bp_int_en ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_id_is_valid()Function

<bp_int.h>

Checks if an interrupt id is valid for the current platform. The validity of the interrupt id is returned as
the function return value for brevity since the function cannot fail.

Prototype bool bp_int_id_is_valid (int id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to check.

Returned
Values

true if the interrupt id is valid, false otherwise.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 142

bp_int_init()Function

<bp_int.h>

Initializes and enables the platform’s interrupt controller. bp_int_init() should usually be called
early in the platform initialization process before the OS or bare-metal environment is initialized.

Most interrupt controller implementations will use statically allocated resources at compile time. For the
implementations that do require run-time allocation, bp_int_init() could return an
RTNC_NO_RESOURCE error. See the implementation’s documentation for details.

Prototype int bp_int_init ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_NO_RESOURCE
RTNC_FATAL

bp_int_prio_get()Function

<bp_int.h>

Retrieves the priority of an interrupt source. The priority of the interrupt source will be returned
through p_priority.

The range, meaning and order of interrupt priorities is implementation defined and usually follows the
platform’s convention.

Prototype int bp_int_prio_get (int id,
uint32_t * p_priority);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to query.
p_priority Pointer to the returned interrupt priority.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_prio_highest_get()Function

<bp_int.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 143

Returns the numerical value of the highest possible interrupt priority.

Prototype uint32_t bp_int_prio_highest_get ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

Numerical value of the highest interrupt priority.

bp_int_prio_lowest_get()Function

<bp_int.h>

Returns the numerical value of the lowest possible interrupt priority.

Prototype uint32_t bp_int_prio_lowest_get ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Values

Numerical value of the lowest interrupt priority.

bp_int_prio_next_get()Function

<bp_int.h>

Returns the numerical value of the next interrupt priority level higher than prio.

In case the next highest priority level is higher than the maximum possible, the maximum interrupt
priority level will be returned.

Prototype uint32_t bp_int_prio_next_get (uint32_t prio);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters prio Interrupt priority.

Returned
Values

Numerical value of the next interrupt priority.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 144

bp_int_prio_prev_get()Function

<bp_int.h>

Returns the numerical value of the previous interrupt priority level lower than prio.

In case the previous lowest priority level is lower than the minimum possible, the minimum interrupt
priority level will be returned.

Prototype uint32_t bp_int_prio_prev_get (uint32_t prio);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters prio Interrupt priority.

Returned
Values

Numerical value of the previous interrupt priority.

bp_int_prio_set()Function

<bp_int.h>

Sets the priority of an interrupt source. The interrupt id’s priority will be set to priority. Attempting
to configure an invalid priority level for the current interrupt controller will return an RTNC_FATAL error.

The range, meaning and order of interrupt priorities is implementation defined and usually follows the
platform’s convention.

It is implementation specific whether changing the priority of a pending interrupt will be effective
immediately.

Prototype int bp_int_prio_set (int id,
uint32_t priority);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to set.
priority Interrupt priority value.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_reg()Function

<bp_int.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 145

Registers an interrupt service routine. Sets the ISR handler of the interrupt source id to the function
handler. The optional argument p_arg will be passed to the interrupt handler when invoked. See the
bp_int_handler_t documentation for details.

Setting a NULL handler will effectively unregister any ISR registered to that interrupt id. It is the
caller’s responsibility to make sure the interrupt source is disabled prior to unregistering an ISR.

The result of an interrupt firing without a registered handler is implementation specific. See the
implementation’s documentation for details.

Prototype int bp_int_reg (int id,
bp_int_handler_t handler,
void * p_arg);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to register.
handler Function pointer to the interrupt handler.
p_arg Argument passed to the interrupt handler.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_src_dis()Function

<bp_int.h>

Disables an interrupt source.

It is implementation specific whether disabling a pending interrupt before it is executed will cancel the
pending interrupt.

Prototype int bp_int_src_dis (int id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to disable.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_src_en()Function

<bp_int.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 146

Enables an interrupt source. The interrupt source id will be enabled even if no ISR is registered for that
interrupt id. It is the caller’s responsibility to make sure that an ISR is registered to that particular
interrupt id before enabling the interrupt. See bp_int_reg() for details.

Prototype int bp_int_src_en (int id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to enable.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_src_is_en()Function

<bp_int.h>

Checks if an interrupt source is enabled. Returns the enabled status of the interrupt through p_is_en.

Prototype int bp_int_src_is_en (int id,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to query.
p_is_en Pointer to the result, set to true if the interrupt is enabled, false oth-

erwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_trig()Function

<bp_int.h>

Triggers a software interrupt.

It is implementation defined whether or not an interrupt can be triggered in software.

Prototype int bp_int_trig (int id);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 147

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to trigger.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_type_get()Function

<bp_int.h>

Gets the trigger type of an interrupt source. The trigger type will be returned through p_type.

Prototype int bp_int_type_get (int id,
bp_int_type_t * p_type);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to query.
p_type Pointer to the returned interrupt type.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_type_set()Function

<bp_int.h>

Sets the trigger type of an interrupt source.

Not all trigger types may be supported on an interrupt controller. It is implementation dependent
whether or not an RTNC_NOT_SUPPORTED error is returned when attempting to set an unsupported
trigger type. Implementations are free to set a different trigger type when appropriate. Calling
bp_int_type_get() will return the actual type when known.

Implementations that do not support changing the interrupt trigger type at runtime will usually ignore
the configuration and return successfully.

Prototype int bp_int_type_set (int id,
bp_int_type_t type);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 148

Parameters id Interrupt id to configure.
type Interrupt type.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_type_tData Type

<bp_int.h>

Interrupt type used to set both the sensitivity type, either edge or level and polarity. Not all values may
be supported by a specific interrupt controller.

See bp_int_type_set() and bp_int_type_get() for details.

Values

BP_INT_TYPE_LEVEL_HIGH High-level sensitivity.

BP_INT_TYPE_LEVEL_LOW Low-level sensitivity.

BP_INT_TYPE_EDGE_RISING Rising edge sensitivity.

BP_INT_TYPE_EDGE_FALLING Falling edge sensitivity.

BP_INT_TYPE_EDGE_ANY Any edge or toggle type interrupt sensitivity.

BP_INT_TYPE_NULL Special invalid value.

bp_int_handler_tData Type

<bp_int.h>

Interrupt handler function signature type.

The argument p_int_arg is taken from the p_arg argument used when registering an interrupt
handler with bp_int_reg().

The interrupt id int_id is passed to the interrupt handler if know.

The source argument is the id of the CPU core that triggered the interrupt on SMP platforms
otherwise it is set to 0.

Prototype void bp_int_handler_t (void * p_int_arg,
int int_id,
uint32_t source);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 149

Parameters p_int_arg User-defined interrupt argument.
int_id Interrupt id of the current interrupt if known.
source Core id of the signaling core for inter-core interrupts.

BP_INT_ID_NONEMacro

<bp_int.h>

Special invalid interrupt value.

BP_INT_TYPE_IS_VALID()Macro

<bp_int.h>

Checks if an interrupt type value is valid.

Expansion true if the interrupt type value is valid. false otherwise.

Interrupt SMP Extension
SMP extension of the interrupt management API. The SMP extensions are used to fine-tune interrupt
behaviour on SMP platforms. Note that the SMP extension API will work in an AMP configuration on an
SMP platform as well to control interrupt targeting and triggering between cores.

bp_int_smp_src_dis()Function

<bp_int_smp.h>

Disables an interrupt source on a specific core.

It is implementation specific whether disabling a pending interrupt before it is executed will cancel the
pending interrupt.

Prototype int bp_int_smp_src_dis (int id,
uint32_t core_id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to disable.
core_id ID of the core to target.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 150

bp_int_smp_src_en()Function

<bp_int_smp.h>

Enables an interrupt source on a specific core. The interrupt source id will be enabled even if no ISR is
registered for that interrupt id. It is the caller’s responsibility to make sure that an ISR is registered to
that particular interrupt id before enabling the interrupt. See bp_int_reg() for details.

Prototype int bp_int_smp_src_en (int id,
uint32_t core_id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to enable.
core_id ID of the core to target.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_int_smp_trig()Function

<bp_int_smp.h>

Triggers a software interrupt targeting a specific core.

It is implementation defined whether or not an interrupt can be triggered in software. It is also
implementation defined which interrupts can be targeted to a specific core. In case an interrupt can be
triggered by software but cannot be targeted to a specific core the behaviour will be the same as if
bp_int_trig() was called.

For maximum portability, bp_int_trig() should be used to trigger a peripheral interrupt.

Prototype int bp_int_smp_trig (int id,
uint32_t core_id);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters id Interrupt id to trigger.
core_id ID of the core to target.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 151

MEM
The memory module provides the application and other BASEplatform modules a variety of memory
management functions. The operations are centered around memory allocators which can be defined at
runtime with various memory regions and attributes. The different choice of allocators can be used to
decide the memory management policy for the entire application. For example the default heap
allocator does not support freeing memory for use with safety critical application or to prevent
fragmentation issues. In contrast to the heap allocator, the c_malloc allocator will use the underlying C
library malloc and free function which can also be set as the default allocator so that the entire
application use the C malloc heap.

Unless otherwise specified all allocators are non-blocking and thread safe, even when running under an
SMP RTOS. Although most of the allocators are atomic and non-blocking memory allocation and freeing
should not be performed from an interrupt service routine.

One allocator should be defined and configured as the default allocator with
bp_mem_alloc_dflt_set(). This should be done very early in the system startup before any
BASEplatform objects are created.

bp_mem_alloc()Function

<bp_mem.h>

Allocates memory from the default allocator.

Prototype void * bp_mem_alloc (size_t size,
size_t align,

p_mem);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Parameters size Amount of memory to allocate in bytes.
align Alignment of the allocated memory block.
p_mem Pointer to the allocated memory.

Returned
Errors

RTNC_SUCCESS
RTNC_NO_RESOURCE
RTNC_FATAL

bp_mem_alloc_create()Function

<bp_mem.h>

Creates a new memory allocator from the definition p_def. If successful a handle to the newly created
allocator will be returned through p_hndl. See bp_mem_alloc_def for details of the available
configurations.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 152

Prototype int bp_mem_alloc_create (const bp_mem_alloc_def_t * p_def,
bp_mem_alloc_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Parameters p_def Allocator’s definition.
p_hndl Pointer to the created handle.

Returned
Errors

RTNC_SUCCESS
RTNC_NO_RESOURCE
RTNC_FATAL

bp_mem_alloc_destroy()Function

<bp_mem.h>

Destroys a memory allocator. Not all allocators support being destroyed, if it’s not supported
RTNC_NOT_SUPPORTED is returned and the allocator is left unaffected.

Destroying an allocator is usually only useful when an application needs to temporarily partition a
region of memory. Destroying the default allocators is not recommended.

Prototype int bp_mem_alloc_destroy (bp_mem_alloc_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Parameters hndl Handle of the allocator to destroy.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_mem_alloc_dflt_get()Function

<bp_mem.h>

Retrieves the default memory allocator if one is set, otherwise a null handle is retururned through
p_hndl and RTNC_NOT_FOUND is returned as the function return code.

Prototype int bp_mem_alloc_dflt_get (hndl);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 153

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Pointer to the returned allocator handle.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_FATAL

bp_mem_alloc_dflt_set()Function

<bp_mem.h>

Sets the default memory allocator to be used when calling bp_mem_alloc() and bp_mem_free().
Once a default allocator is set it can’t be set again, calling bp_mem_alloc_dflt_set() with an
allocator set will return RTNC_FATAL.

Prototype int bp_mem_alloc_dflt_set (bp_mem_alloc_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Parameters hndl Handle of the allocator to use by default.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_mem_alloc_from()Function

<bp_mem.h>

Allocates memory from the a specific allocator.

Prototype void * bp_mem_alloc_from (bp_mem_alloc_hndl_t hndl,
size_t size,
size_t align,

p_mem);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 154

Parameters hndl Handle of the allocator to use.
size Amount of memory to allocate in bytes.
align Alignment of the allocated memory block.
p_mem Pointer to the allocated memory.

Returned
Errors

RTNC_SUCCESS
RTNC_NO_RESOURCE
RTNC_FATAL

bp_mem_free()Function

<bp_mem.h>

Frees a previously allocated block of memory to the default allocator. The memory will be returned to
the allocator if supported, otherwise RTNC_NOT_SUPPORTED is returned and the previously allocated
memory is unaffected.

Prototype int bp_mem_free (void * p_mem);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Parameters p_mem Pointer to the memory to free.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_mem_free_from()Function

<bp_mem.h>

Frees a previously allocated block of memory to a specific allocator if supported. The memory will be
returned to the allocator if supported, otherwise RTNC_NOT_SUPPORTED is returned and the previously
allocated memory is unaffected.

Prototype int bp_mem_free_from (bp_mem_alloc_hndl_t hndl,
void * p_mem);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Parameters hndl Handle of the allocator to use.
p_mem Pointer to the memory to free.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 155

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_mem_lock_acquire()Function

<bp_mem.h>

Acquires an exclusive lock to the memory allocator.

This function is for internal use only.

Prototype int bp_mem_lock_acquire (bp_mem_alloc_hndl_t hndl,
p_mem);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Parameters hndl Handle of the allocator to use.
p_mem Pointer to the memory to free.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_mem_lock_release()Function

<bp_mem.h>

Releases an exclusive lock to the memory allocator.

This function is for internal use only.

Prototype int bp_mem_lock_release (bp_mem_alloc_hndl_t hndl,
p_mem);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Parameters hndl Handle of the allocator to use.
p_mem Pointer to the memory to free.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_SUPPORTED
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 156

bp_mem_alloc_def_tData Type

<bp_mem.h>

Allocator definition structure. Used to describe the type and parameters of a memory allocator with
bp_mem_alloc_create(). Some of the parameters may be interpreted differently or ignored by
certain types of memory allocator.

As an exception compared to other BASEplatform modules, the definition structure itself is not needed
after creation. As such, the memory occupied by the definition structure can be reused after the
creation of a memory allocator.

Members

p_name const char * Name of the memory allocator.

p_drv bp_mem_alloc_drv_t * Pointer to the memory allocator driver.

p_base_addr void * Base address.

size size_t Size of the memory region starting from the
base address.

self_contained bool Set to true if the allocator’s internal data
should be located within the allocator’s own
memory region.

p_ext_def void * Pointer to additional, allocator specific, defi-
nitions.

bp_mem_alloc_drv_tData Type

<bp_mem.h>

bp_mem_alloc_hndl_tData Type

<bp_mem.h>

Allocator handle. Memory allocator handle returned by bp_mem_alloc_create(). The pointer
contained in the handle is private and should not be accessed by calling code.

Members

p_hndl bp_mem_alloc_inst_t * Pointer to the internal memory allocator’s data.

bp_mem_alloc_inst_tData Type

<bp_mem.h>

Internal memory allocator instance data. This structure is exposed to the application through a of type
bp_mem_alloc_hndl_t returned from bp_mem_alloc_create(). It should not be manipulated
directly by the application.

Members

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 157

p_name const char * Allocator’s instance name.

p_base_addr void * Base address.

p_cur_addr void * Highest allocated address, when relevent.

size size_t Total size of the memory region when known.

wasted_size size_t Wasted size statistics used by some alloca-
tors.

lock bp_slock_t Memory allocator’s lock.

rlock bp_slock_t Memory allocator’s reader lock.

locked_task_id uint32_t Task id of the lock owner.

lock_count uint32_t Lock nesting count.

irqflag bp_irq_flag_t Save irq flag.

p_drv bp_mem_alloc_drv_t * Memory allocator’s driver.

p_ext_data void * Memory allocator’s driver data.

BP_MEM_ALLOC_HNDL_IS_NULL()Macro

<bp_mem.h>

Evaluates if a memory allocator handle is NULL.

Prototype BP_MEM_ALLOC_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BP_MEM_NULL_HNDLMacro

<bp_mem.h>

NULL allocator handle.

GPIO
The GPIO module allows control over a platform’s General Purpose I/Os. It can also be used to access
various types of external I/O expanders.

In contrast to the majority of the BASEplatform peripheral interface modules, the GPIO module API is
non-blocking since driver implementations are usually atomic by design. Most of the GPIO module API

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 158

can be called from a critical or interrupt context. However, as a general exception, drivers for external
I/O expanders can be blocking, especially if accessing an I2C or SPI expander.

The meaning of the bank and pin numbers are platform specific, and usually follows the MCU or SoC’s
numbering as documented in the manufacturer’s manuals. Additional details about each GPIO
implementation can be found by consulting the individual driver’s documentation.

bp_gpio_create()Function

<bp_gpio.h>

Creates a new GPIO module instance. The created GPIO instance is associated with the GPIO
peripheral definition p_def. If successful, a handle to the newly created instance is returned through
the p_hndl argument. After returning from a successful call to bp_gpio_create() the newly created
instance is in the created state and should subsequently be enabled to be fully functional. See
bp_gpio_en() for details.

The GPIO definition structure p_def must be unique and can only be associated with a single GPIO
instance. Once created, the UART instance is assigned a name that can be used afterward to retrieve
the interface handle by calling bp_gpio_hndl_get(). The assigned name is set from the board
definition structure p_def and must be unique.

A GPIO peripheral cannot be created more than once. If an attempt is made to open the same interface
twice, bp_gpio_create() returns an RTNC_ALREADY_EXIST error without affecting the already
opened interface.

The board definition p_def passed to bp_gpio_create() must be kept valid for the lifetime of the
application once the GPIO interface is open.

When bp_gpio_create() returns with either an RTNC_NO_RESOURCE or RTNC_ALREADY_EXIST error,
the destination of p_hndl is left unmodified.

Unless specified otherwise in the driver documentation, opening, enabling or disabling a GPIO interface
will not alter or clear the direction and pin state of the GPIO interface.

Prototype int bp_gpio_create (const bp_gpio_board_def_t * p_def,
bp_gpio_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 7 3

Parameters p_def Board definition of the GPIO peripheral to initialize.
p_hndl Handle to the created GPIO module instance.

Returned
Errors

RTNC_SUCCESS
RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 159

Example

extern bp_gpio_board_def_t g_gpio0;
bp_gpio_hndl_t gpio_hndl

bp_gpio_create(&g_gpio0, &gpio_hndl);

bp_gpio_data_get()Function

<bp_gpio.h>

Gets the state of a GPIO pin. Returns the data state of pin number pin of bank bank through the
argument p_data. p_data will be set to either 0 or 1.

Prototype int bp_gpio_data_get (bp_gpio_hndl_t hndl,
uint32_t bank,
uint32_t pin,
uint32_t * p_data);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the GPIO interface to query.
bank Bank number of the pin to query.
pin Pin number of the pin to query.
p_data Pointer to the returned data state.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_data_set()Function

<bp_gpio.h>

Sets the state of a GPIO pin. Set the state of pin number pin of bank bank to the data specified by
data. Data should be either 0 or 1.

Prototype int bp_gpio_data_set (bp_gpio_hndl_t hndl,
uint32_t bank,
uint32_t pin,
uint32_t data);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 160

Parameters hndl Handle of the GPIO interface to set.
bank Bank number of the pin to set.
pin Pin number of the pin to set.
data State of the pin to set.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_data_tog()Function

<bp_gpio.h>

Toggles the state of a GPIO pin. Toggle the the data value from low to high or from high to low of pin
number pin of bank bank.

Prototype int bp_gpio_data_tog (bp_gpio_hndl_t hndl,
uint32_t bank,
uint32_t pin);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the GPIO interface to toggle.
bank Bank number of the pin to toggle.
pin Pin number of the pin to toggle.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_destroy()Function

<bp_gpio.h>

Destroys a GPIO module instance. When supported, bp_gpio_destroy() will free up all the
resources allocated to the GPIO module instance, including the peripheral driver and internal data
structures. Depending on the memory allocation policy of the default memory allocator, it may not be
possible to free previously allocated memory, in that case RTNC_NOT_SUPPORTED is returned and the
GPIO module instance is left unaffected.

It is not necessary, but strongly recommended, to disable a GPIO instance by calling bp_gpio_dis()
before attempting to destroy it. This helps ensure that no race condition exists between the instance
destruction and ongoing operations.

The result of using a GPIO module handle after its underlying instance is destroyed is undefined.

Prototype int bp_gpio_destroy (bp_gpio_hndl_t hndl);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 161

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 7 3

Parameters hndl Handle of the GPIO module instance to destroy.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_gpio_dir_get()Function

<bp_gpio.h>

Gets the direction of a GPIO pin. Returns the direction of pin number pin of bank bank through the
argument p_dir.

Prototype int bp_gpio_dir_get (bp_gpio_hndl_t hndl,
uint32_t bank,
uint32_t pin,
bp_gpio_dir_t * p_dir);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the GPIO interface to query.
bank Bank number of the pin to query.
pin Pin number of the pin to query.
p_dir Pointer to the returned direction.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_dir_set()Function

<bp_gpio.h>

Sets the direction of a GPIO pin. Sets the direction of pin number pin of bank bank to the direction
specified by dir.

Prototype int bp_gpio_dir_set (bp_gpio_hndl_t hndl,
uint32_t bank,
uint32_t pin,
bp_gpio_dir_t dir);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 162

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the GPIO interface to set.
bank Bank number of the pin to set.
pin Pin number of the pin to set.
dir Direction of the pin to set.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_dis()Function

<bp_gpio.h>

Disables a GPIO interface. The exact side effects of disabling an interface is driver dependent. In
general, the peripheral is disabled at the peripheral level, and, when possible, the module clock is gated.

The result of calling bp_gpio_dis() or any other functions other than bp_gpio_en() or
bp_gpio_reset() on an already disabled interface is undefined. With assertion checking enabled,
some drivers will return an RTNC_FATAL error when attempting to access a disabled interface. The
current enabled/disabled state of an interface can be queried using bp_gpio_is_en().

Unless specified otherwise in the driver documentation, opening, enabling or disabling a GPIO interface
will not alter or clear the direction and pin state of the GPIO interface.

To optimize performance and footprint, GPIO drivers are allowed to ignore the calls to bp_gpio_en()
and bp_gpio_dis() and be in the enabled state permanently after being opened. For compatibility
with future releases and portability between GPIO drivers bp_gpio_en() should be called before
attempting to use a newly opened GPIO interface.

Prototype int bp_gpio_dis (bp_gpio_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the GPIO module instance to disable.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_drv_hndl_get()Function

<bp_gpio.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 163

Returns the driver handle associated with a GPIO module instance. The underlying driver handle will be
returned through p_drv_hndl. The driver handle can be used to perform operations with the driver
interface directly or to access driver specific features.

Prototype int bp_gpio_drv_hndl_get (bp_gpio_hndl_t hndl,
bp_gpio_drv_hndl_t * p_drv_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the GPIO module instance to query.
p_drv_hndl Pointer to the GPIO driver handle.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_en()Function

<bp_gpio.h>

Enables a GPIO interface. Enabling an interface in the disabled state will, depending on the driver,
enable the peripheral clock, de-assert reset, if asserted, and enable modifications of the GPIO states.

Calling bp_gpio_en() on an enabled interface should be without side effect.

Unless specified otherwise in the driver documentation, opening, enabling or disabling a GPIO interface
will not alter or clear the direction and pin state of the GPIO interface.

To optimize performance and footprint, GPIO drivers are allowed to ignore the calls to bp_gpio_en()
and bp_gpio_dis() and be in the enabled state permanently after being opened. For compatibility
with future releases and ensure portability between GPIO drivers, bp_gpio_en() should be called
before attempting to use a newly opened GPIO module instance.

Prototype int bp_gpio_en (bp_gpio_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the GPIO module instance to enable.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_hndl_get()Function

<bp_gpio.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 164

Retrieves a previously created GPIO instance handle by name. If found, the result is returned through
the p_hndl argument, otherwise RTNC_NOT_FOUND is returned and p_hndl is left as it was before the
call to bp_gpio_hndl_get().

The name of an instance is set in the bp_gpio_board_def_t board definition passed to
bp_gpio_create().

Prototype int bp_gpio_hndl_get (const char * p_name,
bp_gpio_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_name Name of the GPIO instance to retrieve.
p_hndl Pointer to the GPIO interface handle.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_FATAL

bp_gpio_is_en()Function

<bp_gpio.h>

Returns the enabled/disabled state of a GPIO interface. If successful, the state of the GPIO interface
hndl will be returned through argument p_is_en.

The state of an interface is checked atomically in a non-blocking way. As such, bp_gpio_is_en() can
be called while another operation is in progress without blocking or from an interrupt service routine.

Prototype int bp_gpio_is_en (bp_gpio_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the GPIO interface to check.
p_is_en Returned interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_reset()Function

<bp_gpio.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 165

Resets a GPIO module instance. Upon a successful call to bp_gpio_reset() the GPIO interface is left
in the created state, equivalent to the state a newly created instance. Before using the instance again it
must be re-enabled, see bp_gpio_en().

Pin states are likely to be lost after a reset, reset a platform’s GPIO peripheral should be done with care.

Prototype int bp_gpio_reset (bp_gpio_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the GPIO interface to reset.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_dir_tData Type

<bp_gpio.h>

GPIO direction. Enumeration of the possible GPIO direction values used by the GPIO module and
drivers.

See bp_gpio_dir_set() and bp_gpio_dir_get() for usage details.

Values

BP_GPIO_DIR_NONE Special NULL value.

BP_GPIO_DIR_IN GPIO pin configured as input.

BP_GPIO_DIR_OUT GPIO pin configured as output.

bp_gpio_board_def_tData Type

<bp_gpio.h>

GPIO board level hardware definition. Complete definition of a GPIO interface, including the name, BSP
as well as the SoC level definition structure of type bp_gpio_soc_def_t providing the driver and
driver specific parameters. The overall definition of a GPIO interface should be unique, including the
name, for each GPIO module instance to prevent conflicts.

BSP definitions are driver specific an usually not required, when that is the case p_bsp_def should be
set to NULL. See the driver’s documentation for details.

See bp_gpio_create() for usage details.

Members

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 166

p_soc_def const bp_gpio_soc_def_t * SoC level hardware definition.

p_bsp_def const void * Board and application-specific definition.

p_name const char * GPIO instance name.

bp_gpio_drv_hndl_tData Type

<bp_gpio.h>

GPIO driver handle. GPIO driver handle returned by a driver’s create function. The pointer contained in
the handle is private and should not be accessed by calling code. See bp_gpio_drv_create_t for a
generic description of a driver’s create function.

Most GPIO drivers are single instance drivers that handles all the GPIOs of a chip with a single driver
instance to save resources. Those driver can be passed a BP_GPIO_DRV_NULL_HNDL to use the default
instance.

Members

p_hndl void * Private pointer to the driver instance.

bp_gpio_hndl_tData Type

<bp_gpio.h>

GPIO handle. GPIO handle returned by bp_gpio_create() and used for subsequent access to a
GPIO module instance. The pointer contained in the handle is private and should not be accessed by
calling code.

See bp_gpio_create() for usage details.

Members

p_hndl bp_gpio_inst_t * Private pointer to the GPIO module instance internal data.

bp_gpio_soc_def_tData Type

<bp_gpio.h>

GPIO module SoC level hardware definition structure.

The GPIO hardware definition structure is used to describe the peripheral at the SoC level. The
structure specifies the driver to be used as well as a driver specific definition structure usually
specifying the location, clock, interrupt and various other parameters required by each GPIO drivers.

To be complete, a GPIO hardware instance also requires a board specific portion. Both this structure
and the BSP structures are referenced by a bp_gpio_board_def_t structure to describe a form a
complete GPIO interface definition.

Members

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 167

p_drv const bp_gpio_drv_t * Driver associated with this peripheral.

p_drv_def const void * Driver specific hardware definition.

BP_GPIO_HNDL_IS_NULL()Macro

<bp_gpio.h>

Evaluates if a GPIO handle is NULL.

Prototype BP_GPIO_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BP_GPIO_NULL_HNDLMacro

<bp_gpio.h>

NULL GPIO module handle.

I2C
The I2C module allows access to Inter-Integrated Circuit (I2C) compatible peripherals in both master and
slave configurations.

I2C drivers are usually written to minimize the number of interrupts and context switches generated by
I2C operations.

Considering the wide varieties of I2C compatible peripherals, it would be impossible to design a
high-level API that could leverage the unique features of many peripherals. To alleviate this, drivers are
allowed to implement driver-specific functionalities to extend the features of the I2C module. Details of
these features can be found in each driver’s documentation.

In addition to directly accessing an external i2c peripherals, the BASEplatform also includes many boards
component modules and drivers for popular parts such as IO expanders, EEPROMs, sensors and more.

bp_i2c_acquire()Function

<bp_i2c.h>

Acquires exclusive access to an I2C interface. Upon a successful call the I2C module instance will be
accessible exclusively from the current thread.

bp_i2c_acquire() has no effect in a bare-metal environment.

Prototype int bp_i2c_acquire (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 168

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C module instance to acquire.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_addr_is_10b()Function

<bp_i2c.h>

Checks if an I2C address is in the 10-bit I2C address range. By the standard a valid 10-bit I2C address
ranges from 0x78 (120 decimal) to 0x3FB (1019 decimal) inclusively.

Prototype bool bp_i2c_addr_is_10b (uint32_t addr);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters addr Address to validate.

Returned
Values

Returns true if the address is a 10-bit address false otherwise.

bp_i2c_addr_is_valid()Function

<bp_i2c.h>

Checks the validity of an I2C slave address. Validates that the I2C address addr is valid according to the
I2C specifications.

Prototype bool bp_i2c_addr_is_valid (uint32_t addr);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters addr Address to validate.

Returned
Values

Returns true if the address is valid false otherwise.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 169

bp_i2c_cfg_get()Function

<bp_i2c.h>

Retrieves the current configuration of an I2C interface. Returns the configuration of the I2C interface
through p_cfg. The configuration returned is derived from the hardware registers and reflects the
actual configuration regardless of the last configuration set by bp_i2c_cfg_set().

The clock frequency returned is the actual frequency when known, otherwise the clk_freq member
of the p_cfg argument is set to 0.

It is driver specific whether the slave address specified in the p_cfg configuration structure is saved or
set when the master field is true. This means that some drivers will return a slave address of 0 when
calling bp_i2c_cfg_get() when configured as a master. For compatibility application code should
not rely on bp_i2c_cfg_get() returning a valid i2c address when configured as a master.

When bp_i2c_cfg_get() returns with an RTNC_TIMEOUT error, the destination of p_cfg is left
unmodified.

Prototype int bp_i2c_cfg_get (bp_i2c_hndl_t hndl,
bp_i2c_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C module instance to query.
p_cfg Pointer to the returned I2C configuration.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_cfg_set()Function

<bp_i2c.h>

Configures an I2C interface. Configures the I2C interface using configuration p_cfg. If the interface
was in the opened state, it will transition to the configured state. Otherwise the interface configuration
is updated.

The underlying driver will attempt to configure the closest clock frequency to the specified frequency.
Calling bp_i2c_cfg_get() will return the actual frequency configured.

It is driver specific whether the slave address specified in the p_cfg configuration structure is saved or
set when the master field is true. This means that some drivers will return a slave address of 0 when
calling bp_i2c_cfg_get() when configured as a master. For compatibility application code should
not rely on bp_i2c_cfg_get() returning a valid i2c address when configured as a master.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 170

When bp_i2c_cfg_set() returns with a RTNC_NOT_SUPPORTED or RTNC_TIMEOUT error, it is
guaranteed that the current configuration is unaffected.

Not all peripherals support both master and slave modes. Attempting to set an unsupported mode will
return RTNC_NOT_SUPPORTED.

Drivers for peripherals that do not support changing the clock speed will ignore the bit_rate
argument. bp_i2c_cfg_get() will return the fixed speed if known.

It is driver specific whether or not an RTNC_NOT_SUPPORTED error is returned on configurations not
supported by the underlying peripheral. Unless specified differently by the driver documentation, the
following holds true.

• A clock speed of 0 will return an RTNC_FATAL error, unless it has a special meaning for the
hardware.

• Specifying a clock speed outside of the peripheral’s supported range will configure the closest
supported rate.

• Specifying an unsupported mode will return RTNC_NOT_SUPPORTED.
• Drivers for peripherals with a fixed hardware configuration such as soft IPs for FPGAs, will usually

ignore any configuration parameters and return successfully.

Prototype int bp_i2c_cfg_set (bp_i2c_hndl_t hndl,
const bp_i2c_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C module instance to configure.
p_cfg I2C configuration to apply.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

Example

bp_i2c_hndl_t i2c_hndl;
bp_i2c_cfg_t i2c_cfg;

i2c_cfg.bit_rate = 400000u;
i2c_cfg.master = true;

bp_i2c_cfg_set(i2c_hndl, &i2c_cfg, TIMEOUT_INF);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 171

bp_i2c_create()Function

<bp_i2c.h>

Creates an I2C module instance. The created I2C instance is associated with the I2C peripheral
definition p_def. If successful, a handle to the newly created instance is returned through the p_hndl
argument. After returning from a successful call to bp_i2c_create() the newly created instance is in
the created state and should subsequently be configured and enabled to be fully functional. See
bp_i2c_cfg_set() and bp_i2c_en() for details.

The I2C definition structure p_def must be unique and can only be associated with a single I2C
instance. Once created, the I2C instance is assigned a name that can be used afterward to retrieve the
interface handle by calling bp_i2c_hndl_get(). The assigned name is set from the board definition
structure p_def and must be unique.

An I2C peripheral cannot be opened more than once. If an attempt is made to open the same interface
twice, bp_i2c_create() returns an RTNC_ALREADY_EXIST error without affecting the already opened
interface.

The board definition p_def passed to bp_i2c_create() must be kept valid for the lifetime of the I2C
module instance.

When bp_i2c_create() returns with either an RTNC_NO_RESOURCE or RTNC_ALREADY_EXIST error,
the destination of p_hndl is left unmodified.

Prototype int bp_i2c_create (const bp_i2c_board_def_t * p_def,
bp_i2c_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 7 3

Parameters p_def Definition of the I2C peripheral to initialize.
p_hndl Pointer to the newly created I2C module instance.

Returned
Errors

RTNC_SUCCESS
RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

Example

extern bp_i2c_board_def_t g_i2c0;
bp_i2c_hndl_t i2c_hndl;

bp_i2c_create(&g_i2c0, &i2c_hndl);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 172

bp_i2c_destroy()Function

<bp_i2c.h>

Destroys an I2C module instance. When supported, bp_i2c_destroy() will free up all the resources
allocated to the I2C module instance, including the peripheral driver and internal data structures.
Depending on the memory allocation policy of the default memory allocator it may not be possible to
free previously allocated memory, in that case RTNC_NOT_SUPPORTED is returned and the I2C module
instance is left unaffected.

It is not necessary, but strongly recommended, to disable an I2C interface by calling bp_i2c_dis()
before attempting to destroy it. This helps ensure that no race condition exists between the instance
destruction and ongoing transfers.

The result of using an I2C module handle after its underlying instance is destroyed is undefined.

Prototype int bp_i2c_destroy (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C instance to destroy.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_i2c_dis()Function

<bp_i2c.h>

Disables an I2C interface. bp_i2c_dis() will wait for the interface to be idle before disabling it.

The exact side effect of disabling an interface is driver dependent. In general the peripheral is disabled
at the peripheral level, and, when possible, the module clock is gated.

The result of calling bp_i2c_dis() or any other functions other than bp_i2c_en() or
bp_i2c_reset() on an already disabled interface is undefined. With assertion checking enabled,
some drivers will return RTNC_FATAL when attempting to access a disabled interface. The current
enabled/disabled state of an interface can be queried using bp_i2c_is_en().

Prototype int bp_i2c_dis (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 173

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C module instance to disable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_hndl_get()Function

<bp_i2c.h>

Returns the driver handle associated with an I2C module instance. The underlying driver handle will be
returned through p_drv_hndl. The driver handle can be used to perform operations with the driver
interface directly or to access driver specific features.

Prototype int bp_i2c_drv_hndl_get (bp_i2c_hndl_t hndl,
bp_i2c_drv_hndl_t * p_drv_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the I2C module instance to query.
p_drv_hndl Pointer to the received I2C driver handle.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_i2c_en()Function

<bp_i2c.h>

Enables an I2C interface. Enabling an interface in the disabled or configured state will, depending on the
driver, enable the peripheral clock, de-assert reset, if asserted, and enable transmission and reception
through the I2C interface.

Calling bp_i2c_en() on an enabled interface should be without side effect.

Prototype int bp_i2c_en (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 174

Parameters hndl Handle of the I2C module instance to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_flush()Function

<bp_i2c.h>

Flushes the transmit and receive paths. Flush the transmit and receive paths of an I2C interface. It is
unspecified whether any data written but not yes transmitted is sent or dropped.

Prototype int bp_i2c_flush (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C module instance to flush.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_hndl_get()Function

<bp_i2c.h>

Retrieves a previously created I2C instance handle by name. If found, the result is returned through the
p_hndl argument, otherwise RTNC_NOT_FOUND is returned and p_hndl is left as it was before the call
to bp_i2c_hndl_get().

The name of an interface is set in the bp_i2c_board_def_t board description passed to
bp_i2c_create().

Prototype int bp_i2c_hndl_get (const char * p_name,
bp_i2c_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_name Name of the I2C instance to retrieve.
p_hndl Pointer to the returned I2C interface handle.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 175

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_FATAL

bp_i2c_idle_wait()Function

<bp_i2c.h>

Waits for an I2C interface to be idle.

Prototype int bp_i2c_idle_wait (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C module instance to wait on.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_is_en()Function

<bp_i2c.h>

Returns the enabled/disabled state of an I2C interface. If the call is successful, the state of the I2C
interface hndl through argument p_is_en.

The state of an interface is checked atomically in a non-blocking way. As such bp_i2c_is_en() can
be called while another operation is in progress without blocking or from an interrupt service routine.

Prototype int bp_i2c_is_en (bp_i2c_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the I2C module instance to query.
p_is_en Interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 176

bp_i2c_release()Function

<bp_i2c.h>

Releases exclusive access to an I2C interface.

bp_i2c_release() has no effect in a bare-metal environment.

Prototype int bp_i2c_release (bp_i2c_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 7 3

Parameters hndl Handle of the I2C module instance to release.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_i2c_reset()Function

<bp_i2c.h>

Resets an I2C module instance. Upon a successful call to bp_i2c_reset() the I2C interface is
returned to the created state. Before using the interface again it must be configured and enabled, see
bp_i2c_cfg_set() and bp_i2c_en().

Any asynchronous transfers in progress will be aborted without calling their callback functions.

Prototype int bp_i2c_reset (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C interface to reset.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_xfer()Function

<bp_i2c.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 177

Performs an I2C operation. Transmit or receive through I2C interface according to the p_tf transfer
descriptor. See the bp_i2c_tf_t documentation for details of the individual fields.

The callback member of the p_tf argument, which is only used for asynchronous transfers, should
be set to NULL.

In slave mode the pointee of argument p_tf_len will be the actual number of bytes received in case of
a successful transfer or a receive timeout.

In slave mode RTNC_WANT_READ and RTNC_WANT_WRITE will be returned when the requested operation,
either a transmit or a receive, doesn’t match the operation requested by the I2C master. In those cases
nothing is performed the application should setup a new I2C transfer with the correct direction.

In master mode the hold_nack member of the transfer description structure can be set to true to hold
the bus after the master operation, allowing for a repeated start at the next operation. Note that the
bus will be held indefinitely if no other master operation is performed with hold_nack set to false. To
prevent contention issues in multi-master operation or possible slave timeout it is recommended to
minimize the delay between master operations with the bus held.

The timeout value is the amount of time to wait for the channel to be available. The time spent to
perform the transfer is not counted to consider a timeout condition. Drivers that support querying the
bit rate of the interface in master mode can return RTNC_FATAL in case the transfer operation is taking
longer than expected.

Prototype int bp_i2c_xfer (bp_i2c_hndl_t hndl,
bp_i2c_tf_t * p_tf,
size_t * p_tf_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C module instance to use for the transfer.
p_tf Pointer to an bp_i2c_tf_t structure describing the transfer to per-

form.
p_tf_len Amount of data actually transferred.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_WANT_READ
RTNC_WANT_WRITE
RTNC_IO_ERR
RTNC_FATAL

Example

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 178

bp_i2c_tf_t tf;
size_t tf_len

tf.p_buf = p_buf;
tf.buf_len = 0u;
tf.dir = BP_I2C_DIR_RX;
tf.slave_addr = 0xA;
tf.hold_nack = false;
tf.callback = NULL;

bp_i2c_xfer(i2c_hndl, &tf, &tf_len, TIMEOUT_INF);

bp_i2c_xfer_async()Function

<bp_i2c.h>

Transfers data asynchronously. Performs an asynchronous transfer operation according to the
parameters of the p_tf argument, see the bp_i2c_tf_t documentation for an explanation of the
transfer parameters. Upon successfully starting a transfer, the function returns immediately. The
callback specified in the p_tf structure will be called when the transfer is finished. If no callback is
specified a fire and forget transfer will be performed, where the entire operation will be executed in the
background. Care should be taken when using such transfers as it’s not possible for the application to
know if the transfer succeeded.

The timeout argument timeout_ms specifies the amount of time to wait for the channel to be
available. The timeout value has no impact on the asynchronous transfer operation once started.

In master mode the hold_nack member of the transfer description structure can be set to true to hold
the bus after the master operation, allowing for a repeated start at the next operation. Note that the
bus will be held indefinitely if no other master operation is performed with hold_nack set to false. To
prevent contention issues in multi-master operation or possible slave timeout it is recommended to
minimize the delay between master operations with the bus held.

When bp_i2c_xfer_async() returns with an RTNC_TIMEOUT, error the transfer is not started and the
callback function specified in p_tf won’t be called.

The structure referenced by p_tf must be valid for the entire asynchronous transfer operation and may
be accessed by the I2C driver. Upon returning, the original state of the transfer descriptor will be
preserved. p_tf will be passed verbatim to the callback and may be modified within the user callback
to perform an additional transfer from the callback.

The p_ctxt member of the p_tf transfer descriptor can be used to pass user context information to
the callback.

Prototype int bp_i2c_xfer_async (bp_i2c_hndl_t hndl,
bp_i2c_tf_t * p_tf,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 179

Parameters hndl Handle of the I2C module instance to use for the transfer.
p_tf Transfer parameters.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

Example

bp_i2c_tf_t tf;

tf.p_buf = p_buf;
tf.buf_len = 0u;
tf.dir = BP_I2C_DIR_RX;
tf.slave_addr = 0xA;
tf.hold_nack = false;
tf.callback = cb_func;

bp_i2c_xfer_async(i2c_hndl, &tf, TIMEOUT_INF);

bp_i2c_xfer_async_abort()Function

<bp_i2c.h>

Aborts an asynchronous transfer. Aborts any running asynchronous transfer operation. The number of
bytes already transmitted will be returned through p_tf_len if it’s not NULL.

In case of a successful abort the transfer callback function of the aborted operation won’t be called. It is,
however, possible for the transfer to finish just before being aborted in which case
bp_i2c_xfer_async_abort() will return with RTNC_SUCCESS.

When aborting a write operation p_tf_len may not reflect the actual number of bytes successfully
written through the I2C bus.

In case no asynchronous transfer operation is in progress bp_i2c_xfer_async_abort() will return
RTNC_SUCCESS and the number of bytes transmitted will be 0.

Prototype int bp_i2c_xfer_async_abort (bp_i2c_hndl_t hndl,
size_t * p_tf_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 180

Parameters hndl Handle of the I2C module instance to abort.
p_tf_len Amount of data transferred.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_action_tData Type

<bp_i2c.h>

Asynchronous IO return action. These are the return value possible to an I2C asynchronous IO callback
instructing the driver on the action to be performed. See bp_i2c_xfer_async() and
bp_i2c_async_cb_t for usage details.

Values

BP_I2C_ACTION_FINISH Finish normally.

BP_I2C_ACTION_RESTART Restart a transfer with the data of the current transfer description
structure.

bp_i2c_dir_tData Type

<bp_i2c.h>

I2C direction.

To be used in the bp_i2c_tf_t I2C operation structure. See bp_i2c_xfer() and
bp_i2c_xfer_async() for details.

Values

BP_I2C_DIR_TX I2C transmit/output.

BP_I2C_DIR_RX I2C receive/input.

bp_i2c_async_cb_tData Type

<bp_i2c.h>

Asynchronous IO callback. Callback function pointer type to be used with non-blocking asynchronous
transfers.

When an asynchronous transfer is finished, the callback will be called if set. The status argument will
be one of the following, indicating the result of the transfer:

• RTNC_SUCCESS The transfer finished normally.
• RTNC_IO_ERR An I/O error occurred.
• RTNC_WANT_READ Slave write requested but master indicated a read.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 181

• RTNC_WANT_WRITE Slave read requested but master indicated a write.
• RTNC_FATAL A fatal error was detected.

Two actions are possible when returning.

• BP_I2C_ACTION_FINISH Finish the transfer normally.
• BP_I2C_ACTION_RESTART Restart the transfer operation with the data in the p_tf transfer

description structure.

The transfer description structure is the same that was passed to the initial call to
bp_i2c_xfer_async(). It can be modified prior to returning BP_SPI_ACTION_RESTART to restart
a transfer immediately from the callback using the updated transfer descriptor.

See bp_i2c_xfer_async() for usage details.

Prototype bp_i2c_action_t bp_i2c_async_cb_t (int status,
size_t tf_len,
bp_i2c_tf_t * p_tf);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters status Status of the asynchronous operation.
tf_len Amount of bytes actually transferred in case of timeout or error.
p_tf Pointer to the current transfer.

Returned
Values

Return value of type bp_i2c_action_t to signal the desired operation (terminate or
restart).

bp_i2c_board_def_tData Type

<bp_i2c.h>

I2C board-level hardware definition. Complete definition of an I2C interface, including the name, BSP as
well as the SoC level definition structure of type bp_i2c_soc_def_t providing the driver and driver
specific parameters. The overall definition of an I2C interface should be unique, including the name, for
each I2C module instance to prevent conflicts.

BSP definitions are driver specific and usually not required, when that is the case p_bsp_def should be
set to NULL. See the driver’s documentation for details.

See bp_i2c_create() for usage details.

Members

p_soc_def const bp_i2c_soc_def_t * SoC-level hardware definition.

p_bsp_def void * Board and application specific definition.

p_name const char * I2C peripheral name.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 182

bp_i2c_cfg_tData Type

<bp_i2c.h>

I2C configuration structure. Used to set or return the configuration of an I2C interface.

See bp_i2c_cfg_set() and bp_i2c_cfg_get() for usage details.

Members

bit_rate uint32_t Bit rate.

slave_addr uint16_t Slave address, ignored for master configuration.

master bool true for master mode false for slave.

bp_i2c_drv_hndl_tData Type

<bp_i2c.h>

I2C driver data handle. Pointer to driver private data. The pointer contained in the handle is private and
should not be accessed by calling code.

See bp_i2c_driver_create_t and the driver documentation for details.

Members

p_hndl void * Pointer to the internal I2C driver’s data.

bp_i2c_hndl_tData Type

<bp_i2c.h>

I2C handle. I2C handle returned by bp_i2c_create(). The pointer contained in the handle is private
and should not be accessed by calling code.

Members

p_hndl bp_i2c_inst_t * Pointer to the I2C module internal instance data.

bp_i2c_soc_def_tData Type

<bp_i2c.h>

I2C module SoC-level hardware definition structure.

The I2C hardware definition structure is used to describe the peripheral at the SoC level. The structure
specifies the driver to be used as well as driver specific definition structure usually specifying the
location, clock, interrupt and various other parameters required by each I2C drivers.

To be complete, an I2C hardware instance also requires a board specific portion. Both this structure and
the BSP structures are referenced by a bp_i2c_board_def_t structure to describe a form a complete
I2C interface definition.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 183

Members

p_drv const bp_i2c_drv_t * Driver associated with this peripheral.

p_drv_def const void * Driver specific definition structure.

bp_i2c_tf_tData Type

<bp_i2c.h>

I2C operation definition structure. Used to describe an I2C operation to perform. See bp_i2c_xfer()
and bp_i2c_xfer_async() for usage details.

Members

dir bp_i2c_dir_t Direction.

hold_nack bool Set to true to hold the bus in master mode or to nack
after the end of a transfer in slave mode.

p_buf void * Point to data buffer to transmit or receive.

slave_addr uint16_t Slave address.

buf_len uint32_t Length of data to transmit or receive in bytes.

callback bp_i2c_async_cb_t Async transfer callback. Should be set to NULL for
non-async transfers.

p_ctxt void * Optional user context pointer passed to the asyn-
chronous callback.

BP_I2C_10B_SLV_ADDR_MASKMacro

<bp_i2c.h>

10-bit I2C address mask.

BP_I2C_HNDL_IS_NULL()Macro

<bp_i2c.h>

Evaluates if an I2C module handle is NULL.

Prototype BP_I2C_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 184

BP_I2C_MAX_10B_SLV_ADDRMacro

<bp_i2c.h>

Highest 10-bit I2C address.

BP_I2C_MAX_SLV_ADDRMacro

<bp_i2c.h>

Highest 7-bit I2C address.

BP_I2C_MIN_10B_SLV_ADDRMacro

<bp_i2c.h>

Lowest 10-bit I2C address.

BP_I2C_NULL_HNDLMacro

<bp_i2c.h>

NULL I2C handle.

BP_I2C_SLV_ADDR_MASKMacro

<bp_i2c.h>

7-bit I2C address mask.

SPI
The SPI module allows transmission and reception through Serial Peripheral Interface(SPI) compatible
peripherals along with optional control of the slave select lines. Operation can either be as an SPI
master or slave if supported by the peripheral. The API also supports simultaneous transmission and
reception in both the master and slave configuration.

The exact handling of the slave select line performed by calling bp_spi_slave_sel() and
bp_spi_slave_desel() is driver and platform specific. The mapping between the slave select id and
a physical slave select pin is also platform specific. Additional details are available in the driver’s
documentation.

Considering the wide varieties of SPI compatible peripherals, it would be impossible to design a
high-level API that could leverage the unique features of many peripherals. To alleviate this, drivers are
allowed to implement driver-specific functionalities to extend the features of the SPI module. Details of
these features can be found in each driver’s documentation.

bp_spi_cfg_get()Function

<bp_spi.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 185

Retrieves the current configuration of an SPI interface. If successful, the SPI configuration is returned
through p_cfg. The configuration returned is derived from the hardware registers and reflects the
actual configuration regardless of the last configuration set by bp_spi_cfg_set().

The clock frequency returned is the actual frequency when known, otherwise the max_clk_speed
member of p_cfg is set to 0.

When bp_spi_cfg_get() returns with an RTNC_TIMEOUT error, the destination of p_cfg is left
unmodified.

Prototype int bp_spi_cfg_get (bp_spi_hndl_t hndl,
bp_spi_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to query.
p_cfg Pointer to the returned SPI configuration.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_cfg_set()Function

<bp_spi.h>

Configures an SPI interface. The SPI interface configuration is set from the p_cfg argument. If the
interface was in the created state, it will transition to the configured state and must be enabled using
’bp_spi_en() before being used. Otherwise the interface configuration is updated.

The underlying driver will attempt to configure the closest clock frequency to the specified frequency.
Calling bp_spi_cfg_get() will return the actual frequency configured.

When bp_spi_cfg_set() returns with an RTNC_NOT_SUPPORTED or RTNC_TIMEOUT error, it is
guaranteed that the current configuration is unaffected.

Not all peripherals and drivers support both master and slave mode. Attempting to set an unsupported
mode will return RTNC_NOT_SUPPORTED.

Drivers for peripherals that do not support changing the clock speed will ignore the max_clk_speed
argument. bp_spi_cfg_get() will return the fixed speed if known.

It is driver specific whether or not an RTNC_NOT_SUPPORTED error is returned on configurations not
supported by the underlying peripheral. Unless specified differently by the driver documentation, the
following holds true.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 186

• A clock speed of 0 will return an RTNC_FATAL error unless it has a special meaning for the
hardware.

• Specifying a clock speed outside of the peripheral’s supported range will configure the closest
supported rate.

• Specifying an unsupported mode will return RTNC_NOT_SUPPORTED.
• Drivers for peripherals with a fixed hardware configuration such as soft IPs for FPGAs, will usually

ignore any configuration parameters and return successfully.

Prototype int bp_spi_cfg_set (bp_spi_hndl_t hndl,
const bp_spi_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to configure.
p_cfg SPI configuration.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

Example

bp_spi_hndl_t spi_hndl;
bp_spi_cfg_t spi_cfg;

spi_cfg.clk_phase = 0u;
spi_cfg.clk_polarity = 1u;
spi_cfg.master = 1u;
spi_cfg.max_clk_speed = 0u;

bp_spi_cfg_set(spi_hndl, &spi_cfg, TIMEOUT_INF);

bp_spi_create()Function

<bp_spi.h>

Creates an SPI module instance. The created SPI instance is associated with the SPI peripheral
definition p_def. If successful, a handle to the newly created instance is returned through the p_hndl
argument. After returning from a successful call to bp_spi_create() the newly created instance is in
the created state and should subsequently be configured and enabled to be fully functional. See
bp_spi_cfg_set() and bp_spi_en() for details.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 187

The SPI definition structure p_def must be unique and can only be associated with a single UART
instance. Once created, the SPI instance is assigned a name that can be used afterward to retrieve the
interface handle by calling bp_spi_hndl_get(). The assigned name is set from the board definition
structure p_def and must be unique.

An SPI peripheral cannot be opened more than once. If an attempt is made to open the same interface
twice, bp_spi_create() returns an RTNC_ALREADY_EXIST error without affecting the already opened
interface.

The board definition p_def passed to bp_spi_create() must be kept valid for the lifetime of the SPI
module instance.

When bp_spi_create() returns with either an RTNC_NO_RESOURCE or RTNC_ALREADY_EXIST error,
the destination of p_hndl is left in an undefined state.

Prototype int bp_spi_create (const bp_spi_board_def_t * p_def,
bp_spi_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 7 3

Parameters p_def Definition of the SPI peripheral.
p_hndl Pointer to the created SPI module instance.

Returned
Errors

RTNC_SUCCESS
RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

Example

extern bp_spi_board_def_t g_spi0;
bp_spi_hndl_t spi_hndl;

bp_spi_create(&g_spi0, &spi_hndl);

bp_spi_destroy()Function

<bp_spi.h>

Destroys an SPI module instance. When supported, bp_spi_destroy() will free up all the resources
allocated to the SPI module instance, including the peripheral driver and internal data structures.
Depending on the memory allocation policy of the default memory allocator it may not be possible to
free previously allocated memory, in that case RTNC_NOT_SUPPORTED is returned and the SPI module
instance is left unaffected.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 188

It is not necessary, but strongly recommended, to disable an SPI interface by calling bp_spi_dis()
before attempting to destroy it. This helps ensure that no race condition exists between the instance
destruction and ongoing transfers.

The result of using a UART module handle after its underlying instance is destroyed is undefined.

Prototype int bp_spi_destroy (bp_spi_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to destroy.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_spi_dis()Function

<bp_spi.h>

Disables an SPI interface. bp_spi_dis() will wait for the interface to be idle before disabling it.

The exact side effects of disabling an interface is driver dependent. In general the peripheral is disabled
at the peripheral level, and, when possible, the module clock is gated.

The result of calling bp_spi_dis() or any other functions other than bp_spi_en() or
bp_spi_reset() on an already disabled interface is undefined. With assertion checking enabled,
some drivers will return RTNC_FATAL when attempting to access a disabled interface. The current
enabled/disabled state of an interface can be queried using bp_spi_is_en().

Prototype int bp_spi_dis (bp_spi_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to disable.
timeout_ms Timeout value in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 189

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_hndl_get()Function

<bp_spi.h>
Prototype int bp_spi_drv_hndl_get (bp_spi_hndl_t hndl,

bp_spi_drv_hndl_t * p_drv_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the SPI module instance to query.
p_drv_hndl Pointer to the SPI driver handle.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_spi_en()Function

<bp_spi.h>

Enables an SPI interface. Enabling an SPI module instance in the disabled or configured state will,
depending on the driver, enable the peripheral clock, de-assert reset, if asserted, and enable
transmission and reception through the SPI peripheral.

Calling bp_spi_en() on an enabled SPI instance should be without side effect.

Prototype int bp_spi_en (bp_spi_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI interface to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_flush()Function

<bp_spi.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 190

Flushes the transmit and receive paths. Flush the transmit and receive paths of an SPI interface. It is
unspecified whether any data written but not yet transmitted is sent or dropped. Data held in the
receive FIFO will be discarded.

Prototype int bp_spi_flush (bp_spi_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to flush.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_hndl_get()Function

<bp_spi.h>

Retrieves a previously created SPI instance handle by name. If found, the result is returned through the
p_hndl argument, otherwise RTNC_NOT_FOUND is returned and p_hndl is left as it was before the call
to bp_uart_hndl_get().

The name of an instance is set in the bp_uart_board_def_t board definition passed to
bp_spi_create().

Prototype int bp_spi_hndl_get (const char * p_name,
bp_spi_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_name Name of the SPI instance to retrieve.
p_hndl Pointer to the SPI interface handle.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_FATAL

bp_spi_idle_wait()Function

<bp_spi.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 191

Waits for an SPI interface to be idle. bp_spi_idle_wait() will wait for the transfer logic to be idle in
master mode and for any transfer operation to be complete in slave mode.

Prototype int bp_spi_idle_wait (bp_spi_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to wait on.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_is_en()Function

<bp_spi.h>

Returns the enabled/disabled state of an SPI interface. If the call is successful, the state of the SPI
interface is returned through the argument p_is_en.

The state of an interface is checked atomically in a non-blocking way. As such, bp_spi_is_en() can
be called while another operation is in progress without blocking or from an interrupt service routine.

Prototype int bp_spi_is_en (bp_spi_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to query.
p_is_en Returned interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_spi_reset()Function

<bp_spi.h>

Resets an SPI module instance. Upon a successful call to bp_spi_reset() the SPI interface is left in
the created state, equivalent to the state a newly created instance. Before using the instance again, it
must be reconfigured and enabled, see bp_spi_cfg_set() and bp_spi_en().

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 192

Any asynchronous transfers in progress will be aborted without calling their callback functions.

Prototype int bp_spi_reset (bp_spi_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to reset.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_slave_desel()Function

<bp_spi.h>

Deselects a selected SPI slave. Deselect any selected slave select line of SPI interface hndl and release
exclusive control of the SPI interface. The SPI driver will always wait for the current transfer, if any, to
be finished before deasserting the slave select line.

When hosted by an RTOS supporting mutexes, only the task that called bp_spi_slave_sel() is
allowed to call bp_spi_slave_desel().

bp_spi_slave_desel() should always be called before selecting another slave to properly release
the mutex.

Prototype int bp_spi_slave_desel (bp_spi_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to use.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_slave_sel()Function

<bp_spi.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 193

Selects a specific SPI slave. Select slave interface ss_id of SPI interface hndl and take exclusive
control of an SPI interface. When hosted on an RTOS, calling bp_spi_slave_sel() will acquire a
mutex to ensure no other tasks can access the bus. bp_spi_slave_desel() must be called to
release the bus.

Whether or not the slave select line is actually asserted after calling bp_spi_slave_sel() is driver
specific. By default, the slave select line will be asserted by calling bp_spi_slave_sel() and will be
kept asserted until bp_spi_slave_desel() is called. Some drivers may support additional modes of
operation where the slave select behaves differently, see the driver documentation for details.

The exact mapping of slave select id is specific to the peripheral driver and may depend on driver
specific configurations, see the driver documentation for details.

It is driver specified whether RTNC_NOT_SUPPORTED or RTNC_FATAL is returned when an out of range
ss_id is specified for the current peripheral. For maximum flexibility, drivers for peripherals that do not
support any slave select lines will ignore any selected slave select and return RTNC_SUCCESS.

Prototype int bp_spi_slave_sel (bp_spi_hndl_t hndl,
uint32_t ss_id,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to use.
ss_id Numeric id of the slave select line to assert.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_spi_xfer()Function

<bp_spi.h>

Performs an SPI operation. Transmit and/or receive through SPI interface using the transfer parameters
p_tf.

The callback argument of p_tf, which is only used for asynchronous transfers, should be set to NULL.

In master mode, since the SPI protocol operates as a shift register the pointee of p_tf_len will always
match the configured length unless an error happens. On error the value of p_tf_len is undefined.

In slave mode the number of bytes returned through p_tf_len will be the actual number of bytes
transferred in case of a successful transfer or a receive timeout.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 194

The timeout value is the amount of time to wait for the channel to be available. The time spent to
perform the transfer is not counted to consider a timeout condition. Drivers that support querying the
bit rate of the interface in master mode can return RTNC_FATAL in case the transfer operation is taking
longer than expected.

Prototype int bp_spi_xfer (bp_spi_hndl_t hndl,
bp_spi_tf_t * p_tf,
size_t * p_tf_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to use.
p_tf Pointer to an bp_spi_tf_t structure describing the transfer to per-

form.
p_tf_len Amount of data actually transferred.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

Example

bp_spi_tf_t tf;
size_t rx_len

tf.p_tx_buf = p_tx_buf;
tf.p_rx_buf = p_rx_buf;
tf.len = 100u;
tf.callback = NULL;

bp_spi_xfer(spi_hndl, &tf, &rx_len, timeout_ms);

bp_spi_xfer_async()Function

<bp_spi.h>

Transfers data asynchronously. Performs an asynchronous transfer operation according to the
parameters of the p_tf argument, see the bp_spi_tf_t structure documentation for an explanation
of the transfer parameters. Upon successfully starting a transfer, the function returns immediately. The
callback specified in the p_tf structure will be called when the transfer is finished. If no callback is
specified a fire and forget transfer will be performed, where the entire operation will be executed in the

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 195

background. Care should be taken when using such transfers as it’s not possible for the application to
know if the transfer succeeded.

The timeout argument timeout_ms specifies the amount of time to wait for the channel to be
available. The timeout value has no impact on the asynchronous transfer operation once started.

When bp_spi_xfer_async() returns with an RTNC_TIMEOUT error, the transfer is not started and the
callback function specified in p_tf won’t be called.

The structure referenced by p_tf must be valid for the entire asynchronous transfer operation and may
be accessed by the SPI driver. Upon returning, the original state of the transfer will be preserved. p_tf
will be passed verbatim to the callback and may be modified within the user callback to perform an
additional transfer from the callback.

The p_ctxt member of the p_tf transfer descriptor can be used to pass user context information to
the callback.

Prototype int bp_spi_xfer_async (bp_spi_hndl_t hndl,
bp_spi_tf_t * p_tf,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI module instance to use for the asynchronous trans-
fer.

p_tf Transfer parameters.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_xfer_async_abort()Function

<bp_spi.h>

Aborts an asynchronous transfer. Aborts any running asynchronous transfer operation. The number of
bytes already transmitted and received will be returned through p_tx_len and p_rx_len if they are
not NULL.

In case of a successful abort the transfer callback function of the aborted operation won’t be called. It is
however, possible for the transfer to finish just before being aborted in which case
bp_spi_xfer_async_abort() will return with RTNC_SUCCESS.

Aborting a transfer will clear the transmit and receive FIFOs if any, which can lead to data loss.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 196

Prototype int bp_spi_xfer_async_abort (bp_spi_hndl_t hndl,
size_t * p_tx_len,
size_t * p_rx_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the interface to abort.
p_tx_len Pointer to the amount of data already transferred.
p_rx_len Pointer to the amount of data already received.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_action_tData Type

<bp_spi.h>

Asynchronous IO return action. These are the return value possible to an SPI asynchronous IO callback
instructing the driver on the action to be performed. See bp_spi_async_cb_t and
bp_spi_xfer_async() for details.

Values

BP_SPI_ACTION_FINISH Finish normally.

BP_SPI_ACTION_RESTART Restart a transfer with the data of the current transfer description
structure.

bp_spi_async_cb_tData Type

<bp_spi.h>

Asynchronous IO callback function pointer. Callback function pointer type to be used with non-blocking
asynchronous transfers.

When an asynchronous transfer is finished, the callback will be called, if set. The status argument will
be one of the following, indicating the result of the transfer:

• RTNC_SUCCESS The transfer is finished normally.
• RTNC_IO_ERR An I/O error occurred.
• RTNC_FATAL A fatal error was detected.

Two actions are possible when returning.

• BP_SPI_ACTION_FINISH Finish the transfer normally.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 197

• BP_SPI_ACTION_RESTART Restart the transfer operation with the data in the p_tf transfer
description structure.

The transfer descriptor structure is the same that was passed to the initial call to
bp_spi_xfer_async(). It can be modified prior to returning BP_SPI_ACTION_RESTART to restart
a transfer immediately from the callback using the updated transfer descriptor.

See bp_spi_xfer_async() for usage details.

Prototype bp_spi_action_t bp_spi_async_cb_t (int status,
size_t tf_len,
bp_spi_tf_t * p_tf);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters status Status of the asynchronous operation.
tf_len Amount of bytes actually transferred in case of timeout or error.
p_tf Pointer to the current transfer.

Returned
Values

Return value of type bp_spi_action_t to signal the desired operation (terminate or
restart).

bp_spi_board_def_tData Type

<bp_spi.h>

SPI board-level hardware definition. Complete definition of an SPI interface, including the name, BSP as
well as the SoC level definition structure of type bp_spi_soc_def_t providing the driver and driver
specific parameters. The overall definition of a SPI interface should be unique, including the name, for
each SPI module instance to prevent conflicts.

BSP definitions are driver specific and usually not required, when that is the case p_bsp_def should be
set to NULL. See the driver’s documentation for details.

See bp_spi_create() for usage details.

Members

p_soc_def const bp_spi_soc_def_t * SoC level definition.

p_bsp_def const void * Board and application specific definition.

p_name const char * SPI peripheral name.

bp_spi_cfg_tData Type

<bp_spi.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 198

SPI protocol configuration structure. Used to set or return the configuration of an SPI interface.

See bp_spi_cfg_set() and bp_spi_cfg_get() for usage details.

Members

bit_rate uint32_t Bit rate in Hertz.

clk_phase uint32_t Clock phase 1 or 0.

clk_polarity uint32_t Clock polarity 1 or 0.

ss_id uint32_t Slave select id to configure. Only used on controllers that sup-
ports multiple different SPI configuration in hardware.

master bool Set to true for master mode false for slave.

bp_spi_drv_hndl_tData Type

<bp_spi.h>

SPI driver handle. Pointer to driver private data. The pointer contained in the handle is private and
should not be accessed by calling code.

Members

p_hndl void * Pointer to the SPI driver internal data.

bp_spi_hndl_tData Type

<bp_spi.h>

SPI handle. SPI handle returned by bp_spi_create(). The pointer contained in the handle is private
and should not be accessed by calling code.

Members

p_hndl bp_spi_inst_t * Pointer to the SPI internal instance data.

bp_spi_soc_def_tData Type

<bp_spi.h>

SPI hardware definition structure.

The SPI hardware definition structure is used to describe the peripheral at the SoC level. It specifies the
driver to be used as well as the location, either as an index or more often a base address.

To be complete a SPI hardware instance also requires a board specific portion. Both this structure and
the BSP structures are merged into a bp_spi_board_def_t structure to describe a complete SPI
interface instance.

Members

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 199

p_drv const bp_spi_drv_t * Driver associated with this peripheral.

p_drv_def const void * Driver specific definition.

bp_spi_tf_tData Type

<bp_spi.h>

SPI transfer setup structure. Used by the transfer API and the drivers to describe an SPI transfer.

See bp_spi_xfer() and bp_spi_xfer_async() for usage details.

Members

p_tx_buf const void * Pointer to the buffer to transmit.

p_rx_buf void * Memory location of the buffer that will contain the re-
ceived data.

len size_t Length of the data to receive and/or transmit.

callback bp_spi_async_cb_t Async transfer callback. Should be set to NULL for non-
async transfers.

p_ctxt void * Optional user context pointer passed to the asyn-
chronous callback.

BP_SPI_HNDL_IS_NULL()Macro

<bp_spi.h>

Evaluates if an SPI module handle is NULL.

Prototype BP_SPI_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BP_SPI_NULL_HNDLMacro

<bp_spi.h>

NULL SPI module handle.

BP_SPI_SS_NONEMacro

<bp_spi.h>

Special slave select value that represents no specific slave. See bp_spi_slave_sel() for usage
details.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 200

UART
The UART module is used to interface with Universal Asynchronous Receiver-Transmitter and other
similar serial interface peripherals. UART peripherals are usually comprised of two independent receive
and transmit interfaces. To allow for maximum flexibility the UART module is designed to permit
concurrent access to both the transmit and receive channel in a thread safe manner without blocking
each other.

Some API functions that act on the entire UART peripheral state, such as bp_uart_cfg_set() and
bp_uart_dis() and many others will need to lock both the transmit and receive paths to prevent any
possible race conditions. The inner locking is designed to prevent deadlocks from occurring.

Considering the wide varieties of UART and UART-like peripherals, it would be impossible to design a
high-level API that could leverage the unique features of many peripherals. To alleviate this, drivers are
allowed to implement driver-specific functionalities to extend the features of the UART module. Details
of these features can be found in each driver’s documentation.

bp_uart_acquire()Function

<bp_uart.h>

Acquires exclusive access to a UART module instance. Upon a successful call, the UART instance will be
accessible exclusively from the current thread.

bp_uart_acquire() has no effect in a bare-metal environment.

Prototype int bp_uart_acquire (bp_uart_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to acquire.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_cfg_get()Function

<bp_uart.h>

Retrieves the current configuration of a UART interface. If successful, the UART configuration is
returned through p_cfg. The configuration returned is derived from the hardware registers and reflects
the actual configuration regardless of the last configuration set by bp_uart_cfg_set().

The baud rate returned is the actual baud rate when known, otherwise the baud_rate member of
p_cfg is set to 0.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 201

When bp_uart_cfg_get() returns with an RTNC_TIMEOUT error, the destination of p_cfg is left
unmodified.

Prototype int bp_uart_cfg_get (bp_uart_hndl_t hndl,
bp_uart_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to query.
p_cfg Pointer to the UART configuration.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_cfg_set()Function

<bp_uart.h>

Configures a UART interface. The UART interface configuration is set from the p_cfg argument. If the
interface was in the created state, it will transition to the configured state and must be enabled using
bp_uart_en() before being used. Otherwise the interface configuration is updated.

The underlying driver will attempt to configure the closest baud rate to the specified baud rate that is
less than the requested rate. Calling bp_uart_cfg_get() will return the actual baud rate configured.

When bp_uart_cfg_set() returns with an RTNC_NOT_SUPPORTED or RTNC_TIMEOUT error, it is
guaranteed that the current configuration is unaffected.

It is driver specific whether or not an RTNC_NOT_SUPPORTED error is returned on configurations not
supported by the underlying peripheral. Unless specified differently by the driver documentation, the
following holds true.

• A baud rate of 0 will return an RTNC_FATAL error unless it has a special meaning for the hardware.
• Specifying a baud rate outside of the peripheral’s supported range will configure the closest

supported rate.
• Specifying an unsupported parity will return RTNC_NOT_SUPPORTED.
• The configuration for one and a half and two stop bits can be used interchangeably by the driver if

one of them is not supported by the hardware.
• In case both one and one and a half stop bits are unsupported, RTNC_NOT_SUPPORTED is returned

if either one is specified.
• Drivers for peripherals with a fixed hardware configuration such as soft IPs for FPGAs, or virtual

UART interfaces will usually ignore any configuration parameters and return successfully.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 202

Prototype int bp_uart_cfg_set (bp_uart_hndl_t hndl,
const bp_uart_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to configure.
p_cfg UART configuration to apply.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

Example

bp_uart_hndl_t uart_hndl;
bp_uart_cfg_t uart_cfg;

bp_uart_cfg.baud_rate = 115200u;
bp_uart_cfg.parity = UART_PARITY_NONE;
bp_uart_cfg.stop_bits = UART_STOP_BITS_1;

bp_uart_cfg_set(uart_hndl, &uart_cfg, TIMEOUT_INF);

bp_uart_create()Function

<bp_uart.h>

Creates a UART module instance. The created UART instance is associated with the UART peripheral
definition p_def. If successful, a handle to the newly created instance is returned through the p_hndl
argument. After returning from a successful call to bp_uart_create() the newly created instance is
in the created state and should subsequently be configured and enabled to be fully functional. See
bp_uart_cfg_set() and bp_uart_en() for details.

The UART definition structure p_def must be unique and can only be associated with a single UART
instance. Once created, the UART instance is assigned a name that can be used afterward to retrieve
the interface handle by calling bp_uart_hndl_get(). The assigned name is set from the board
definition structure p_def and must be unique.

A UART peripheral cannot be opened more than once. If an attempt is made to open the same interface
twice, bp_uart_create() returns an RTNC_ALREADY_EXIST error without affecting the already
opened interface.

The board definition p_def passed to bp_uart_create() must be kept valid for the lifetime of the
UART module instance.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 203

When bp_uart_create() returns with either an RTNC_NO_RESOURCE or RTNC_ALREADY_EXIST error,
the destination of p_hndl is left in an undefined state.

Prototype int bp_uart_create (const bp_uart_board_def_t * p_def,
bp_uart_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 7 3

Parameters p_def Definition of the UART peripheral.
p_hndl Pointer to the created UART module instance.

Returned
Errors

RTNC_SUCCESS
RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

Example

extern bp_uart_board_def_t g_uart0;
bp_uart_hndl_t uart_hndl;

bp_uart_create(&g_uart0, &uart_hndl);

bp_uart_destroy()Function

<bp_uart.h>

Destroys a UART module instance. When supported, bp_uart_destroy() will free up all the
resources allocated to the UART module instance, including the peripheral driver and internal data
structures. Depending on the memory allocation policy of the default memory allocator it may not be
possible to free previously allocated memory, in that case RTNC_NOT_SUPPORTED is returned and the
UART module instance is left unaffected.

It is not necessary, but strongly recommended, to disable a UART instance by calling bp_uart_dis()
before attempting to destroy it. This helps ensure that no race condition exists between the instance
destruction and ongoing transfers.

The result of using a UART module handle after its underlying instance is destroyed is undefined.

Prototype int bp_uart_destroy (bp_uart_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 204

Parameters hndl Handle of the UART module instance to destroy.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_uart_dis()Function

<bp_uart.h>

Disables a UART interface. bp_uart_dis() will wait for the interface to be idle before disabling it.

The exact side effects of disabling an interface is driver dependent. In general the peripheral is disabled
at the peripheral level, and, when possible, the module clock is gated.

The result of calling bp_uart_dis() or any other functions other than bp_uart_en() or
bp_uart_reset() on an already disabled interface is undefined. With assertion checking enabled,
some drivers will return RTNC_FATAL when attempting to access a disabled interface. The current
enabled/disabled state of an interface can be queried using bp_uart_is_en().

Prototype int bp_uart_dis (bp_uart_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to disable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_hndl_get()Function

<bp_uart.h>

Returns the driver handle associated with a UART module instance. The underlying driver handle will be
returned through p_drv_hndl. The driver handle can be used to perform operations with the driver
interface directly or to access driver specific features.

Prototype int bp_uart_drv_hndl_get (bp_uart_hndl_t hndl,
bp_uart_drv_hndl_t * p_drv_hndl);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 205

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the UART module instance to query.
p_drv_hndl Pointer to the UART driver handle.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_uart_en()Function

<bp_uart.h>

Enables a UART interface. Enabling a UART module instance in the disabled or configured state will,
depending on the driver, enable the peripheral clock, de-assert reset, if asserted, and enable
transmission and reception through the UART peripheral.

Calling bp_uart_en() on an enabled UART instance should be without side effect.

Prototype int bp_uart_en (bp_uart_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_hndl_get()Function

<bp_uart.h>

Retrieves a previously created UART instance handle by name. If found, the result is returned through
the p_hndl argument, otherwise RTNC_NOT_FOUND is returned and p_hndl is left as it was before the
call to bp_uart_hndl_get().

The name of an instance is set in the bp_uart_board_def_t board definition passed to
bp_uart_create().

Prototype int bp_uart_hndl_get (p_if_name,
bp_uart_hndl_t * p_hndl);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 206

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters p_if_name Name of the UART instance to retrieve.
p_hndl Pointer to the UART interface handle.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_FATAL

bp_uart_is_en()Function

<bp_uart.h>

Returns the enabled/disabled state of a UART interface. If the call is successful the state of the UART
interface is returned through the argument p_is_en.

The state of an interface is checked atomically in a non-blocking way. As such, bp_uart_is_en() can
be called while another operation is in progress without blocking or from an interrupt service routine.

Prototype int bp_uart_is_en (bp_uart_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the UART module instance to query.
p_is_en Interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_uart_release()Function

<bp_uart.h>

Releases exclusive access to a UART interface.

bp_uart_release() has no effect in a bare-metal environment.

Prototype int bp_uart_release (bp_uart_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 207

Parameters hndl Handle of the UART module instance to release.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_uart_reset()Function

<bp_uart.h>

Resets a UART module instance. Upon a successful call to bp_uart_reset() the UART interface is
left in the created state, equivalent to the state a newly created instance. Before using the instance
again, it must be reconfigured and enabled, see bp_uart_cfg_set() and bp_uart_en().

Any asynchronous transfer in progress will be aborted without calling their callback functions.

Prototype int bp_uart_reset (bp_uart_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART interface to reset.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_rx()Function

<bp_uart.h>

Receives data. Receives up to len bytes from a UART interface into buffer p_buf. On completion, the
actual number of bytes received is returned through p_recv_len if it’s not NULL.

When a timeout value of 0 is specified, the UART driver will return any data, up to len bytes, that is
available from the receive FIFO and return immediately. If len bytes were read from the FIFO,
RTNC_SUCCESS is returned, otherwise RTNC_TIMEOUT is returned.

If supported by the UART driver and the underlying hardware, receive errors, such as parity, framing,
and breaks will cause an immediate return with an RTNC_IO_ERR error. The number of bytes read up to
that point is then returned through p_recv_len. It is driver dependent whether bytes with an error
detected are written to the receive buffer or discarded. See the driver’s documentation for details on
how invalid bytes are handled.

When bp_uart_rx() returns with an RTNC_IO_ERR error, it is driver specific whether or not the
invalid bytes are written to the receive buffer. When it is, the returned number of bytes read includes
the invalid data. See the driver’s documentation for details.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 208

A NULL p_rx_len can be passed if the number of bytes read is of no interest to the caller.

Prototype int bp_uart_rx (bp_uart_hndl_t hndl,
void * p_buf,
size_t len,
size_t * p_rx_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART modules instance to use for reception.
p_buf Pointer to the buffer that will receive the data.
len Length of the data to receive in bytes.
p_rx_len Return pointer of the actual number of bytes read, can be NULL.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

bp_uart_rx_async()Function

<bp_uart.h>

Receives data asynchronously. Performs an asynchronous receive operation according to the
parameters of the p_tf argument, see the bp_uart_tf_t documentation for an explanation of the
transfer parameters. Upon successfully starting a transfer, the function returns immediately. The
callback specified in the p_tf structure will be called when the transfer is finished. If no callback is
specified, a fire and forget transfer will be performed, where the entire operation will be executed in the
background. Care should be taken when using such transfers as it’s not possible for the application to
know if the transfer succeeded.

The timeout argument timeout_ms specifies the amount of time to wait for the channel to be
available. The timeout value has no impact on the asynchronous transfer operation once started.

When bp_uart_tx_async() returns with an RTNC_TIMEOUT error, the transfer is not started and the
callback function specified in p_tf won’t be called.

The structure referenced by p_tf must be valid for the entire asynchronous transfer operation and may
be accessed by the UART driver. Upon returning, the original state of the transfer descriptor will be
preserved. p_tf will be passed verbatim to the callback and may be modified within the user callback
to perform an additional transfer from the callback.

The p_ctxt member of the p_tf transfer descriptor can be used to pass user context information to
the callback.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 209

Prototype int bp_uart_rx_async (bp_uart_hndl_t hndl,
bp_uart_tf_t * p_tf,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to use for reception.
p_tf Transfer parameters.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_rx_async_abort()Function

<bp_uart.h>

Aborts an asynchronous reception. Aborts any running asynchronous reception operation. The number
of bytes already received will be returned through p_rx_len if it’s not NULL.

In case of a successful abort, the transfer callback function will be not be called. It is, however, possible
for the transfer to finish just before being aborted in which case bp_uart_tx_async_abort() will
return with RTNC_SUCCESS and the number of bytes received will be 0.

In case no asynchronous reception operation is in progress bp_uart_rx_async_abort() will return
RTNC_SUCCESS and the number of bytes received returned will be 0.

Prototype int bp_uart_rx_async_abort (bp_uart_hndl_t hndl,
size_t * p_rx_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to abort.
p_rx_len Pointer to the number of bytes received, can be NULL.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 210

bp_uart_rx_flush()Function

<bp_uart.h>

Flushes the receive path. The receive FIFO of the UART interface is cleared, any data pending in the
UART FIFO is discarded.

Prototype int bp_uart_rx_flush (bp_uart_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module to flush.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_rx_idle_wait()Function

<bp_uart.h>

Waits for a UART interface receive path to be idle.

Prototype int bp_uart_rx_idle_wait (bp_uart_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to wait on.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_tx()Function

<bp_uart.h>

Transmits data. Transmits len bytes from buffer p_buf through a UART interface.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 211

The timeout value specifies the amount of time to wait for the channel to be available. The time spent
to perform the transfer is not counted to consider a timeout condition.

UART peripherals do not usually have a way to detect transmission issues. However, for those
peripherals that can, and when the error is not due to a software or internal hardware issue,
RTNC_IO_ERR can be returned by the driver, see the driver’s documentation for details.

Drivers are allowed to use an internal timeout, independent of the timeout_ms argument, to detect a
stuck peripheral when a transmit operation is taking longer than expected. An RTNC_FATAL error is
returned in those cases, see the driver’s documentation for details.

It is unspecified how many data, if any, was actually transmitted from a failed transfer.

Prototype int bp_uart_tx (bp_uart_hndl_t hndl,
const void * p_buf,
size_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to use for transmission.
p_buf Pointer to the buffer to transmit.
len Length of the data to transmit in bytes.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

bp_uart_tx_async()Function

<bp_uart.h>

Transmits data asynchronously. Performs an asynchronous transmit operation according to the
parameters of the p_tf argument, see the bp_uart_tf_t documentation for an explanation of the
transfer parameters. Upon successfully starting a transfer the function returns immediately. The
callback specified in the p_tf structure will be called when the transfer is finished. If no callback is
specified, a fire and forget transfer will be performed, where the entire operation will be executed in the
background. Care should be taken when using such transfers as it’s not possible for the application to
know if the transfer succeeded.

The timeout argument timeout_ms specifies the amount of time to wait for the channel to be
available. The timeout value has no impact on the asynchronous transfer operation once started.

When bp_uart_tx_async() returns with an RTNC_TIMEOUT error, the transfer is not started and the
callback function specified in p_tf won’t be called.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 212

The structure referenced by p_tf must be valid for the entire asynchronous transfer operation and may
be accessed by the UART driver. Upon returning, the original state of the transfer descriptor will be
preserved. p_tf will be passed verbatim to the callback and may be modified within the user callback
to perform an additional transfer from the callback.

The p_ctxt member of the p_tf transfer descriptor can be used to pass user context information to
the callback.

Prototype int bp_uart_tx_async (bp_uart_hndl_t hndl,
bp_uart_tf_t * p_tf,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to use for transmission.
p_tf Transfer parameters.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_tx_async_abort()Function

<bp_uart.h>

Aborts an asynchronous transmission. Aborts any running asynchronous transmission operation. The
number of bytes already transmitted will be returned through p_tx_len if it’s not NULL.

In case of a successful abort, the transfer callback function will not be called. It is, however, possible for
a transfer to finish just before being aborted in which case bp_uart_tx_async_abort() will return
with RTNC_SUCCESS and the number of bytes transmitted returned will be 0.

In case no asynchronous transfer operation is in progress bp_uart_tx_async_abort() will return
RTNC_SUCCESS and the number of bytes transmitted will be 0.

Prototype int bp_uart_tx_async_abort (bp_uart_hndl_t hndl,
size_t * p_tx_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to abort.
p_tx_len Pointer to the number of bytes transmitted, can be NULL.
timeout_ms Timeout value in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 213

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_tx_flush()Function

<bp_uart.h>

Flushes the transmit path. Empty the transmit FIFO of the UART interface. It is unspecified whether any
data written but not yet transmitted is sent or dropped.

Prototype int bp_uart_tx_flush (bp_uart_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to flush.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_tx_idle_wait()Function

<bp_uart.h>

Waits for a UART interface transmit path to be idle.

Prototype int bp_uart_tx_idle_wait (bp_uart_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART module instance to wait on.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 214

bp_uart_action_tData Type

<bp_uart.h>

Asynchronous IO return action. These are the return values possible to a UART asynchronous IO
callback, instructing the driver on the action to be performed. See bp_uart_tx_async(),
bp_uart_rx_async() and bp_uart_async_cb_t for usage details.

Values

BP_UART_ACTION_FINISH Finish normally.

BP_UART_ACTION_RESTART Restart a transfer with the data of the current transfer description
structure.

bp_uart_parity_tData Type

<bp_uart.h>

UART parity type. For use to specify the UART parity setting within the bp_uart_cfg_t configuration
structure.

See bp_uart_cfg_t, bp_uart_cfg_set() and bp_uart_cfg_get() for usage details.

Values

BP_UART_PARITY_NONE No parity.

BP_UART_PARITY_ODD Odd parity.

BP_UART_PARITY_EVEN Even parity.

BP_UART_PARITY_MARK Mark parity.

BP_UART_PARITY_SPACE Space parity.

BP_UART_PARITY_NULL Special invalid value.

bp_uart_stop_bits_tData Type

<bp_uart.h>

UART stop bits configuration. Number of stop bits for use with the bp_uart_cfg_t configuration
structure. Some of these values may be interpreted slightly differently by some drivers, such as 1.5 stop
bits may be interpreted as 2 stop bits if the UART peripheral doesn’t support one and a half stop bits.

See bp_uart_cfg_t, bp_uart_cfg_set() and bp_uart_cfg_get() for usage details.

Values

BP_UART_STOP_BITS_1 One stop bit.

BP_UART_STOP_BITS_1_5 On and a half stop bits.

BP_UART_STOP_BITS_2 Two stop bits.

BP_UART_STOP_BITS_NULL Special invalid value.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 215

bp_uart_async_cb_tData Type

<bp_uart.h>

Asynchronous IO callback function pointer. Callback function pointer type to be used with non-blocking
asynchronous transfers.

When an asynchronous transfer is finished, the callback will be called if set. The status argument will
be one of the following, indicating the result of the transfer:

• RTNC_SUCCESS The transfer finished normally.
• RTNC_IO_ERR An I/O error occurred.
• RTNC_FATAL A fatal error was detected.

Two actions are possible when returning.

• BP_UART_ACTION_FINISH Finish the transfer normally.
• BP_UART_ACTION_RESTART Restart the transfer operation from the updated p_tf transfer

description structure.

The transfer descriptor structure is the same that was passed to the initial call to
bp_uart_tx_async() or bp_uart_rx_async(). It can be modified prior to returning
BP_UART_ACTION_RESTART to restart a transfer immediately from the callback using the updated
transfer descriptor.

See bp_uart_tx_async() and bp_uart_rx_async() for usage details.

Prototype bp_uart_action_t bp_uart_async_cb_t (int status,
size_t tf_len,
bp_uart_tf_t * p_tf);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters status Status of the asynchronous operation.
tf_len Number of bytes actually read or written.
p_tf Pointer to the current transfer.

Returned
Values

Return value of type bp_uart_action_t to signal the desired operation (Terminate
or restart).

bp_uart_board_def_tData Type

<bp_uart.h>

UART board level hardware definition. Complete definition of a UART interface, including the name,
BSP as well as the SoC level definition structure of type bp_uart_soc_def_t providing the driver and
driver specific parameters. The overall definition of a UART interface should be unique, including the
name, for each UART module instance to prevent conflicts.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 216

BSP definitions are driver specific and usually not required, when that is the case p_bsp_def should be
set to NULL. See the driver’s documentation for details.

See bp_uart_create() for usage details.

Members

p_soc_def const bp_uart_soc_def_t * SoC level hardware definition.

p_bsp_def const void * Board and application specific definition.

p_name const char * UART peripheral name.

bp_uart_cfg_tData Type

<bp_uart.h>

UART protocol configuration structure. Used to set or return the configuration of a UART interface.

See bp_uart_cfg_set() and bp_uart_cfg_get() for usage details.

Members

baud_rate uint32_t Baud rate.

parity bp_uart_parity_t Parity.

stop_bits bp_uart_stop_bits_t Number of stop bits.

bp_uart_drv_hndl_tData Type

<bp_uart.h>

UART driver handle. The pointer contained in the handle is private and should not be accessed by
calling code. Used by the application to access the driver directly.

See bp_uart_drv_create_t and the driver documentation for details.

Members

p_hndl void * Pointer to the internal UART driver data.

bp_uart_hndl_tData Type

<bp_uart.h>

UART handle. Returned by bp_uart_create(). The pointer contained in the handle is private and
should not be accessed by calling code.

Members

p_hndl bp_uart_inst_t * Pointer to the UART module internal instance data.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 217

bp_uart_soc_def_tData Type

<bp_uart.h>

UART module SoC level hardware definition structure.

The UART hardware definition structure is used to describe the peripheral at the SoC level. The
structure specifies the driver to be used as well as a driver specific definition structure usually
specifying the location, clock, interrupt and various other parameters required by each UART drivers.

To be complete, a UART hardware instance also requires a board specific portion. Both this structure
and the BSP structures are referenced by a bp_uart_board_def_t structure to describe a form a
complete UART interface definition.

Members

p_drv const bp_uart_drv_t * Driver associated with this interface.

p_drv_def const void * Driver specific definition structure.

bp_uart_tf_tData Type

<bp_uart.h>

UART transfer setup structure. Used for asynchronous transfers and internally by some drivers.

Members

p_buf void * Memory buffer to transmit from or receive to.

len size_t Length of the data to transmit or receive in bytes.

callback bp_uart_async_cb_t Asynchronous transfer callback function.

p_ctxt void * Optional user context pointer passed to the asyn-
chronous callback.

BP_UART_ACTION_IS_VALID()Macro

<bp_uart.h>

Checks if UART stop bits configuration value is valid.

Expansion true if the stop bits configuration value is valid. false otherwise.

BP_UART_HNDL_IS_NULL()Macro

<bp_uart.h>

Evaluates if a UART module handle is NULL.

Prototype BP_UART_HNDL_IS_NULL (hndl);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 218

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BP_UART_NULL_HNDLMacro

<bp_uart.h>

NULL UART handle.

BP_UART_PARITY_IS_VALID()Macro

<bp_uart.h>

Checks if UART parity value is valid.

Expansion true if the parity value is valid. false otherwise.

BP_UART_STOP_BITS_IS_VALID()Macro

<bp_uart.h>

Checks if UART stop bits configuration value is valid.

Checks if UART stop bits value is valid.

Expansion true if the stop bits configuration value is valid. false otherwise.

true if the stop bits value is valid. false otherwise.

BP_UART_STOP_BITS_IS_VALID()Macro

<bp_uart.h>

Checks if UART stop bits configuration value is valid.

Checks if UART stop bits value is valid.

Expansion true if the stop bits configuration value is valid. false otherwise.

true if the stop bits value is valid. false otherwise.

Storage Media
The storage media module, or media module for short, is used to access multiple types of non-volatile
storage and storage peripherals using a unified interface. The media module can support, through
underlying drivers, bare flash memory (NOR, NAND etc...), managed flash memory (SDCard, eMMC,

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 219

SSD) and others including a RAMdisk driver. The media interface API can be accessed directly, enabling
the application to perform raw byte-level accesses to the media. It can also be used by any of the file
systems supported by the BASEplatform.

To support the individual intricacies of each type of storage media, the initialization of a media module
instance follows a different convention compared to most other BASEplatform modules. The media
module does not have the usual create and configuration functions, instead the media driver’s create
function should be called which will return a media handle. Following the call to the driver specific
create, the driver’s configuration function should be called to setup the various configurations specific
to that type of media. For example, to initialize a NOR Flash memory bp_qspi_mem_create() would
be called followed by bp_qspi_mem_cfg_set() to configure the NOR speed, width and other
parameters specific to QSPI memories. Following those steps the generic media API can be used
starting with bp_media_en() to enable the newly created media.

The media module API is byte oriented giving maximum versatility when using byte addressable
memory. However, some media may have restrictions to the size and alignment of read, write and erase
operations. When interfacing with such a media, care should be taken to make sure the size and address
of the operation is a multiple of the minimum operation size. bp_media_prop_get() can be called to
query the minimum read, write and erase sizes of the underlying media.

bp_media_dis()Function

<bp_media.h>

Disables a media instance. Disabling a media instance can have different side effects depending on the
underlying media driver. This can include disabling the peripheral clock and putting the external
memory device in a low power mode.

The result of calling bp_media_dis() or any other functions other than bp_media_en() or
bp_media_reset() on an already disabled media is undefined. With assertion checking enabled,
some drivers will return RTNC_FATAL when attempting to access a disabled interface. The current
enabled/disabled state of an interface can be queried using bp_media_is_en().

Prototype int bp_media_dis (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media module instance to disable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 220

bp_media_en()Function

<bp_media.h>

Enables a media instance. Enabling a media instance can have different side effects depending on the
media driver. This can include activating the peripheral clock, deassert reset and possibly wake up or
enable the external memory device if relevant.

Calling bp_media_en() on an enabled media instance should be without side effect.

Prototype int bp_media_en (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media module instance to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

bp_media_erase()Function

<bp_media.h>

Erases len bytes starting from media address addr. While the API accepts any addresses and length at
the byte granularity, it is the caller’s responsibility to observe the erase block size restriction of the
underlying media. bp_media_prop_get() can be called to query a the minimum erase block size of a
media instance.

The timeout value is the amount of time to wait for the media to be available. The time spent doing the
erase operation is not counted to consider a timeout condition. In case RTNC_TIMEOUT is returned it is
guaranteed that no data has been erased from the device.

Drivers are allowed to use an internal timeout, independent of the timeout_ms argument, to detect a
stuck peripheral when an erase operation is taking longer than expected. An RTNC_FATAL or
RTNC_IO_ERR error is returned in those cases, see the driver’s documentation for details.

It is unspecified how much data, if any, was actually erased from a failed transfer when RTNC_FATAL or
RTNC_IO_ERR is returned.

Prototype int bp_media_erase (bp_media_hndl_t hndl,
uint64_t addr,
uint64_t len,
uint32_t timeout_ms);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 221

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media module instance to erase.
addr Media start address to erase.
len Length of the area to erase.
timeout_ms Timeout value in millisecond

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

bp_media_is_en()Function

<bp_media.h>

Returns the enabled/disabled state of a media instance. If the call is successful the state of the media is
returned through the argument p_is_en.

The state of a media is checked atomically in a non-blocking way. As such, bp_media_is_en() can be
called while another operation is in progress without blocking or from an interrupt service routine.

Prototype int bp_media_is_en (bp_media_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the media module instance to query.
p_is_en Interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_media_prop_get()Function

<bp_media.h>

Returns the media properties. The properties, including the media size as well as the read, write and
erase block sizes are returned through the p_prop argument.

Prototype int bp_media_prop_get (bp_media_hndl_t hndl,
bp_media_prop_t * p_prop);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 222

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the media module instance to query.
p_prop Pointer to the returned properties.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_media_read()Function

<bp_media.h>

Reads len bytes to the destination buffer p_src from media address addr. While the API accepts any
addresses and length at the byte granularity it is the caller’s responsibility to observe the read block size
restriction of the underlying media. bp_media_prop_get() can be called to query a the minimum
read block size of a media instance.

The timeout value is the amount of time to wait for the media to be available. The time spent doing the
read operation is not counted to consider a timeout condition. In case RTNC_TIMEOUT is returned it is
guaranteed that no data has been read from the device.

Drivers are allowed to use an internal timeout, independent of the timeout_ms argument, to detect a
stuck peripheral when a read operation is taking longer than expected. An RTNC_FATAL or RTNC_IO_ERR
error is returned in those cases, see the driver’s documentation for details.

It is unspecified how much data, if any, was actually read from a failed transfer when RTNC_FATAL or
RTNC_IO_ERR is returned.

Prototype int bp_media_read (bp_media_hndl_t hndl,
uint64_t addr,
void * p_dest,
uint64_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media module instance to read from.
addr Source address.
p_dest Pointer to the buffer that will receive the data.
len Length of data to read in bytes.
timeout_ms Timeout value in millisecond

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 223

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

bp_media_reset()Function

<bp_media.h>

Resets a media instance. Upon a successful call to bp_media_reset() the media is left in the created
state, equivalent to the state of a newly created instance. Before using the instance again, it must be
reconfigured and enabled using the media driver specific configuration function and bp_media_en().

Prototype int bp_media_reset (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media instance to reset.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_media_write()Function

<bp_media.h>

Writes len bytes from source buffer p_src to destination address addr. While the API accepts any
addresses and length at the byte granularity it is the caller’s responsibility to observe the write block
size restriction of the underlying media. bp_media_prop_get() can be called to query the minimum
write block size of a media instance.

The timeout value is the amount of time to wait for the media to be available. The time spent doing the
write operation is not counted to consider a timeout condition. In case RTNC_TIMEOUT is returned it is
guaranteed that no data has been written or modified on the device.

Drivers are allowed to use an internal timeout, independent of the timeout_ms argument, to detect a
stuck peripheral when a write operation is taking longer than expected. An RTNC_FATAL or
RTNC_IO_ERR error is returned in those cases, see the driver’s documentation for details.

It is unspecified how much data, if any, was actually written from a failed transfer when RTNC_FATAL or
RTNC_IO_ERR is returned.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 224

Prototype int bp_media_write (bp_media_hndl_t hndl,
uint64_t addr,
const void * p_src,
uint64_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media module instance to write to.
addr Destination address.
p_src Pointer to the data to write.
len Length of data to write in bytes.
timeout_ms Timeout value in millisecond

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

bp_media_hndl_tData Type

<bp_media.h>

Media module handle. The pointer contained in the handle is private and should not be accessed by
calling code.

Members

p_hndl bp_media_inst_t * Pointer to the internal media module instance data.

bp_media_prop_tData Type

<bp_media.h>

Media properties structure. Returned by bp_media_prop_get() to inform the application or a file
system of the media size and read, write and erase operations minimum size and alignment.

In the case of a device that doesn’t require erasing, the erase_block_sz_log2 member will be set to
0.

Members

size uint32_t Media size in bytes.

erase_blk_sz_log2 uint32_t Base 2 logarithm of the erase block size.

write_blk_sz_log2 uint32_t Base 2 logarithm of the write block size.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 225

read_blk_sz_log2 uint32_t Base 2 logarithm of the read block size.

BP_MEDIA_HNDL_IS_NULL()Macro

<bp_media.h>

Evaluates if a media module handle is NULL.

Prototype BP_MEDIA_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BP_MEDIA_NULL_HNDLMacro

<bp_media.h>

NULL media module handle.

QSPI Memory
The QSPI memory media driver is responsible for interfacing with external memory using the QSPI
interface. These types of memory include NOR, MRAM and FRAM devices. The QSPI memory driver is
meant to be used by the media module to provide an abstract low-level interface to the underlying
storage. In turn, a device specific driver for the connected media is used to handle the protocol
variations and device-specific configuration of each QSPI memory.

The initialization of the media module and its media driver follows a different convention compared to
most BASEplatform module. The media module does not have the usual create and configuration
functions, instead the QSPI memory driver create function should be called which will return a media
handle. Following the call to the driver specific create, the driver’s configuration function should be
called to setup the various configurations specific to that type of media. For example, to initialize a QSPI
NOR Flash memory bp_qspi_mem_create() would be called followed by bp_qspi_mem_cfg_set() to
configure the NOR speed, width and other parameters specific to QSPI memories. Following those steps
the generic media interface can be used starting with bp_media_en() to enable the newly created media.

At the device creation, a QSPI memory board definition must be passed to bp_qspi_mem_create().
This board definition contains, among other things, the part definition as well as which physical QSPI
interface to use. The part definition describes the part requirements, such as interface driver, operations
timing and capabilities. Unless using a custom or special part or board, these definitions should be
provided with the BASEplatform. Creation of a media instance using the QSPI memory driver is thus
simply a matter of passing the pre-defined definition board definition of the QSPI memory to use to
bp_qspi_mem_create().

The QSPI memory API is byte oriented giving maximum versatility since most QSPI memories such as
NOR flash are byte addressable. However, it is important to comply with the write and erase block size
restriction when relevant. When interfacing with such a media care should be taken to make sure the

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 226

size and address of the erase or write operations are a multiple of the minimum operation size.
bp_media_prop_get() can be called to query the minimum read, write and erase sizes of the underlying
memory.

bp_qspi_mem_cfg_get()Function

<bp_qspi_mem.h>

Retrieves the QSPI memory configuration. If successful, the QSPI memory configuration is returned
through p_cfg.

Prototype int bp_qspi_mem_cfg_get (bp_media_hndl_t hndl,
bp_qspi_mem_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory media instance to query.
p_cfg Pointer to the returned configuration.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_qspi_mem_cfg_set()Function

<bp_qspi_mem.h>

Configures a QSPI memory media instance. The QSPI memory configuration including the bus speed,
interface width, read command mode as well as the DDR mode of the interface will be set from p_cfg.
Once configured, the QSPI memory should be enabled by calling bp_media_en().

The underlying QSPI peripheral and QSPI chip drivers will attempt to configure the closest clock to the
specified speed that is less than the requested frequency. If the requested clock speed is higher than
the maximum supported speed of the QSPI peripheral or the memory chip the lowest maximum
frequency of all the components involved will be set.

When bp_qspi_mem_cfg_set() returns with an RTNC_NOT_SUPPORTED or RTNC_TIMEOUT error, it is
guaranteed that the current configuration is unaffected.

Trying to configure an unsuported width or mode will return RTNC_NOT_SUPPORTED. Special values of
BP_QSPI_MEM_MODE_AUTO and BP_QSPI_DDR_MODE_AUTO can be used to configure the best
interface mode supported by both the memory chip and the QSPI interface.

Prototype int bp_qspi_mem_cfg_set (bp_media_hndl_t hndl,
const bp_qspi_mem_cfg_t * p_cfg,
uint32_t timeout_ms);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 227

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory media instance to configure.
p_cfg Pointer to the configuration to apply.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_IO
RTNC_FATAL

bp_qspi_mem_create()Function

<bp_qspi_mem.h>

Creates a QSPI memory media instance. As described in the module overview qspi_mem_create()
will return a media handle through p_hndl. The more generic media module interface can then be used
to perform I/O operations to the QSPI memory.

The QSPI memory definition structure p_def must be unique and can only be associated with a single
QSPI memory instance. Once created, the instance is assigned a name that can be used afterward to
retrieve the interface handle by calling bp_media_hndl_get(). The assigned name is set from the
board definition structure p_def and must be unique.

A QSPI memory cannot be opened more than once. If an attempt is made to open the same interface
twice, bp_qspi_mem_create() returns an RTNC_ALREADY_EXIST error without affecting the already
opened interface.

The board definition p_def passed to bp_qspi_mem_create() must be kept valid for the lifetime of
the QSPI memory module instance.

When bp_qspi_mem_create() returns with either an RTNC_NO_RESOURCE or RTNC_ALREADY_EXIST
error, the destination of p_hndl is left in an undefined state.

Prototype int bp_qspi_mem_create (const bp_qspi_mem_board_def_t * p_def,
bp_media_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 7 3

Parameters p_def Definition of the QSPI memory.
p_hndl Pointer to the created media module instance.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 228

Returned
Errors

RTNC_SUCCESS
RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

bp_qspi_mem_destroy()Function

<bp_qspi_mem.h>

Destroys a QSPI memory media instance. When supported, bp_qspi_mem_destroy() will free up all
the resources allocated to the UART module instance, including the peripheral driver and internal data
structures. Depending on the memory allocation policy of the default memory allocator it may not be
possible to free previously allocated memory, in that case RTNC_NOT_SUPPORTED is returned and the
QSPI media instance is left unaffected.

It is not necessary, but strongly recommended, to disable a QSPI media instance by calling
bp_qspi_mem_dis() before attempting to destroy it. This helps ensure that no race condition exists
between the instance destruction and ongoing transfers.

The result of using a QSPI media handle after its underlying instance is destroyed is undefined.

Prototype int bp_qspi_mem_destroy (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory media instance to destroy.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_qspi_mem_dis()Function

<bp_qspi_mem.h>

Disables a QSPI memory instance. This has the same effect as bp_media_dis(), for portability it is
recommended to use bp_media_dis() when disabling a QSPI memory.

Prototype int bp_qspi_mem_dis (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 229

Parameters hndl Handle of the QSPI memory instance to disable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_qspi_mem_en()Function

<bp_qspi_mem.h>

Enables a QSPI memory instance. This has the same effect as bp_media_en(), for portability it is
recommended to use bp_media_en() when enabling a QSPI memory.

Prototype int bp_qspi_mem_en (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory instance to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_qspi_mem_erase()Function

<bp_qspi_mem.h>

Erases len bytes to the starting from the QSPI media address addr. While the API accepts any
addresses and length at the byte granularity it is the caller’s responsibility to observe the erase block
size restriction of the underlying QSPI media. bp_qspi_mem_prop_get() or the generic
bp_media_prop_get() can be called to query the media minimum erase block size.

The timeout value is the amount of time to wait for the media to be available. The time spent doing the
read operation is not counted to consider a timeout condition. In case RTNC_TIMEOUT is returned it is
guaranteed that no data has been erased from the device.

Peripheral drivers are allowed to use an internal timeout, independent of the timeout_ms argument, to
detect a stuck peripheral when a write operation is taking longer than expected. An RTNC_FATAL or
RTNC_IO error is returned in those cases, see the driver’s documentation for details.

It is unspecified how much data, if any, was actually erased from a failed transfer when RTNC_FATAL or
RTNC_IO is returned.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 230

Prototype int bp_qspi_mem_erase (bp_media_hndl_t hndl,
uint64_t addr,
uint64_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI media instance to erase.
addr Media start address to erase.
len Length of the area to erase.
timeout_ms Timeout value in millisecond

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_qspi_mem_is_en()Function

<bp_qspi_mem.h>

Returns the enabled/disabled state of a QSPI memory media instance. If the call is successful the state
of the media is returned through the argument p_is_en. This function is equivalent to
bp_media_is_en(), for portability it is recommended to use bp_media_is_en() to query the state
of a QSPI memory.

Prototype int bp_qspi_mem_is_en (bp_media_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the media module instance to query.
p_is_en Interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_qspi_mem_media_prop_get()Function

<bp_qspi_mem.h>

Returns the media properties. The properties, including the media size as well as the read, write and
erase block sizes are returned through the p_prop argument.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 231

Prototype int bp_qspi_mem_media_prop_get (bp_media_hndl_t hndl,
bp_media_prop_t * p_prop);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the QSPI media instance to query.
p_prop Pointer to the returned properties.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_qspi_mem_prop_get()Function

<bp_qspi_mem.h>

Returns the QSPI memory specific media properties. The properties, including the media size as well as
the read, write and erase block sizes are returned through the p_prop argument.

Prototype int bp_qspi_mem_prop_get (bp_media_hndl_t hndl,
bp_qspi_mem_prop_t * p_prop);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the QSPI media instance to query.
p_prop Pointer to the returned properties.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_qspi_mem_read()Function

<bp_qspi_mem.h>

Reads len bytes to the destination buffer p_src from media address addr. While the API accepts any
addresses and length at the byte granularity it is the caller’s responsibility to observe the read block size
restriction of the underlying QSPI memory. bp_qspi_mem_prop_get() or the generic
bp_media_prop_get() can be called to query the media minimum read block size.

The timeout value is the amount of time to wait for the media to be available. The time spent doing the
read operation is not counted to consider a timeout condition. In case RTNC_TIMEOUT is returned it is
guaranteed that no data has been read from the device.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 232

Peripheral drivers are allowed to use an internal timeout, independent of the timeout_ms argument, to
detect a stuck peripheral when a read operation is taking longer than expected. An RTNC_FATAL or
RTNC_IO error is returned in those cases, see the driver’s documentation for details.

It is unspecified how much data, if any, was actually read from a failed transfer when RTNC_FATAL or
RTNC_IO is returned.

Prototype int bp_qspi_mem_read (bp_media_hndl_t hndl,
uint64_t addr,
void * p_dest,
uint64_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI media instance to read from.
addr Source address.
p_dest Pointer to the buffer that will receive the data.
len Length of data to read in bytes.
timeout_ms Timeout value in millisecond

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_qspi_mem_reset()Function

<bp_qspi_mem.h>

Resets a media instance. Upon a successful call to bp_qspi_mem_reset() the media is left in the
created state, equivalent to the state a newly created instance. Before using the QSPI memory again it
must be reconfigured and enabled using bp_qspi_mem_cfg_set() and bp_qspi_media_en().

Prototype int bp_qspi_mem_reset (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI media instance to reset.
timeout_ms Timeout value in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 233

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_qspi_mem_write()Function

<bp_qspi_mem.h>

Writes len bytes from source buffer p_src to destination address addr. While the API accepts any
addresses and length at the byte granularity it is the caller’s responsibility to observe the write block
size restriction of the underlying QSPI memory.bp_qspi_mem_prop_get() or the generic
bp_media_prop_get() can be called to query the media minimum write block size.

The timeout value is the amount of time to wait for the media to be available. The time spent doing the
write operation is not counted to consider a timeout condition. In case RTNC_TIMEOUT is returned it is
guaranteed that no data has been written or modified on the device.

Peripheral drivers are allowed to use an internal timeout, independent of the timeout_ms argument, to
detect a stuck peripheral when a write operation is taking longer than expected. An RTNC_FATAL or
RTNC_IO error is returned in those cases, see the driver’s documentation for details.

It is unspecified how much data, if any, was actually written from a failed transfer when RTNC_FATAL or
RTNC_IO is returned.

Prototype int bp_qspi_mem_write (bp_media_hndl_t hndl,
uint64_t addr,
const void * p_src,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI media instance to write to.
addr Destination address.
p_src Pointer to the data to write.
timeout_ms Timeout value in millisecond

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_qspi_mem_xip_dis()Function

<bp_qspi_mem.h>

Disables execute in place(XIP) mode. If a QSPI memory and interface was in XIP mode calling
bp_qspi_mem_xip_dis() will cause an exit from XIP mode.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 234

Note that there is no way to know if a XIP transfer is currently in progress, as such it is important that
all accesses to the memory mapped region are completed before attempting to exit XIP mode.

Prototype int bp_qspi_mem_xip_dis (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory media instance to configure.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_IO
RTNC_FATAL

bp_qspi_mem_xip_en()Function

<bp_qspi_mem.h>

Puts a QSPI memory and interface into execute in place(XIP) mode. Once in XIP mode the memory
mapped QSPI device can be read from the SoC specific memory region. Once in XIP mode it can only
be exited by calling bp_qspi_mem_xip_dis().

While a QSPI memory and interface are in XIP mode it is not possible to perform writes or most other
operations. The result of performing any operations other than a memory mapped write, a reset or
disabling XIP mode through bp_qspi_mem_xip_dis() is undefined.

Prototype int bp_qspi_mem_xip_en (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory media instance to configure.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_IO
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 235

bp_qspi_mem_xip_is_en()Function

<bp_qspi_mem.h>

Queries the enabled/disabled state of the execute in place(XIP) mode. The state of the QSPI memory
hndl is returned through p_is_en.

Prototype int bp_qspi_mem_xip_is_en (bp_media_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters hndl Handle of the QSPI memory media instance to query.
p_is_en Pointer to the returned state, true if XIP mode is enabled, false other-

wise.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_qspi_mem_ddr_mode_tData Type

<bp_qspi_mem.h>

QSPI memory interface Dual Data Rate (DDR) modes. Used to enable/disable or report the DDR
configuration of a QSPI memory. See bp_qspi_mem_cfg_set() and bp_qspi_mem_cfg_get() as
well as bp_qspi_mem_cfg_t for usage details.

Values

BP_QSPI_MEM_DDR_MODE_DIS DDR disabled.

BP_QSPI_MEM_DDR_MODE_EN DDR enabled.

BP_QSPI_MEM_DDR_MODE_AUTO Enable/disable DDR mode according to hardware capabilities.

BP_QSPI_MEM_DDR_MODE_NULL Special invalid value.

bp_qspi_mem_mode_tData Type

<bp_qspi_mem.h>

QSPI memory interface modes. Used to configure or report the width and read types of a QSPI memory.
See bp_qspi_mem_cfg_set() and bp_qspi_mem_cfg_get() as well as bp_qspi_mem_cfg_t for
usage details.

Values

BP_QSPI_MEM_MODE_SINGLE Single I/O read.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 236

BP_QSPI_MEM_MODE_SINGLE_FAST Single I/O fast read.

BP_QSPI_MEM_MODE_DUAL_OUT Dual output read.

BP_QSPI_MEM_MODE_DUAL_IN_OUT Dual I/O read.

BP_QSPI_MEM_MODE_QUAD_OUT Quad output read.

BP_QSPI_MEM_MODE_QUAD_IN_OUT Quad I/O read.

BP_QSPI_MEM_MODE_AUTO Automatic mode selection from hardware capabilities.

BP_QSPI_MEM_MODE_NULL Special invalid value.

bp_qspi_mem_timing_tbl_tData Type

<bp_qspi_mem.h> Prototype bp_qspi_mem_timing_tbl_t ();

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters

bp_qspi_mem_board_def_tData Type

<bp_qspi_mem.h>

QSPI memory board definition structure. This is used to describe a complete QSPI memory including
the interface name, the QSPI peripheral to use as well as the memory device driver and characteristics.

This structure is passed to bp_qspi_mem_create() to create a QSPI memory media instance.

Members

p_name const char * QSPI memory media instance name.

p_qspi_name const char * Name of the QSPi memory interface
to use.

p_part_def const bp_qspi_mem_part_def_t * < QSPI memory part definition.

bp_qspi_mem_cfg_tData Type

<bp_qspi_mem.h>

QSPI memory configuration structure. Used by bp_qspi_mem_cfg_set() and
’bp_qspi_mem_cfg_get() to set and report the QSPI memory configuration. The configuration includes
the clock frequency, bus mode and width as well as DDR mode.

Members

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 237

clk_freq uint32_t Desired clock frequency.

mode bp_qspi_mem_mode_t QSPI memory interface mode.

ddr_mode bp_qspi_mem_ddr_mode_t QSPI memory interface DDR mode.

bp_qspi_mem_drv_hndl_tData Type

<bp_qspi_mem.h>

QSPI memory driver handle. The pointer contained in the handle is private and should not be accessed
by calling code. Used by the application to access the driver directly.

See bp_qspi_mem_drv_create_t and the driver documentation for details.

Members

p_hndl void * Pointer to the internal QSPI memory driver data.

bp_qspi_mem_inst_tData Type

<bp_qspi_mem.h>

QSPI memory instance. The fields contained within the bp_qspi_mem_inst_t structure are private
and should not be accessed by the application.

bp_qspi_mem_op_timing_tbl_tData Type

<bp_qspi_mem.h>

QSPI memory device operation timing table. This table is used within a bp_qspi_mem_part_def_t
structure to define the timing of various QSPI memory operations.

Members

page_prgm_min_us uint32_t Minimum page programing time in microsec-
onds.

page_prgm_poll_dly_us uint32_t Page programming poll delay in microseconds.

page_prgm_max_us uint32_t Maximum page programing time in microsec-
onds.

chip_erase_min_ms uint32_t Minimum whole chip erase time in milliseconds.

chip_erase_poll_dly_ms uint32_t Whole chip erase poll delay in milliseconds.

chip_erase_max_ms uint32_t Maximum whole chip erase time in millisec-
onds.

subsec_erase_min_ms uint32_t Minimum subsector erase time in milliseconds.

subsec_erase_poll_dly_ms uint32_t Subsector erase poll delay in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 238

subsec_erase_max_ms uint32_t Maximum subsector erase time in milliseconds.

sec_erase_min_ms uint32_t Minimum sector erase time in milliseconds.

sec_erase_poll_dly_ms uint32_t sector erase poll delay in milliseconds.

sec_erase_max_ms uint32_t Maximum sector erase time in milliseconds.

bp_qspi_mem_part_def_tData Type

<bp_qspi_mem.h>

QSPI memory part definition structure. This part definition structure is used to specify various
paramteres of a QSPI memory such as a NOR flash. This includes the device driver, operation timing as
well as the ID of the memory chip.

This structure is used within a QSPI memory board definition structure to describe a complete QSPI
memory which can then be used to create a QSPI memory instance using bp_qspi_mem_create().
See bp_qspi_mem_board_def_t for additional details on the usage of this structure.

Members

p_part_name const char * Part name.

p_qspi_mem_drv const bp_qspi_mem_drv_t * Driver associ-
ated with this
part.

sdr_timing_tbl const bp_qspi_mem_timing_tbl_t * Single data rate
interface timing
table.

ddr_timing_tbl const bp_qspi_mem_timing_tbl_t * Dual data rate in-
terface timing ta-
ble.

p_op_timing_tbl const bp_qspi_mem_op_timing_tbl_t * Operations tim-
ing table.

manuf_id uint8_t JEDEC manufac-
turer ID.

device_id uint8_t JEDEV device
ID.

sdr_timing_tbl_depth uint8_t Number of rows
of the single
data rate in-
terface timing
table.

ddr_timing_tbl_depth uint8_t Number of rows
of the dual data
rate interface
timing table.

p_drv_part_def const void * Pointer to addi-
tional driver spe-
cific data.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 239

bp_qspi_mem_prop_tData Type

<bp_qspi_mem.h>

QSPI memory properties. Returned by bp_qspi_mem_prop_get() to inform the application or a file
system of the media size and read, write and erase operation minimum sizes and alignment.

In the case of a device that doesn’t require erasing, the erase_block_sz_log2 member will be set to
0.

BP_QSPI_MEM_DDR_MODE_IS_VALID()Macro

<bp_qspi_mem.h>

Checks if the QSPI memory DDR mode value is valid.

Expansion true if the mode value is valid. false otherwise.

BP_QSPI_MEM_MODE_IS_VALID()Macro

<bp_qspi_mem.h>

Checks if the QSPI memory mode value is valid.

Expansion true if the mode value is valid. false otherwise.

BP_QSPI_MEM_TIMING_TBL_COL_CNTMacro

<bp_qspi_mem.h>

Error Codes
Generic return code definitions. The descriptions below are a general guideline to the meaning of each
return code. Consult the API documentation for a detailed list and description of errors that can be
returned by each API.

Unexpected error codes returned by any functions, including error codes outside of the range of defined
error codes should be treated as a fatal error.

RTNC_*Macro

<rtnc.h>

Return codes.

RTNC_SUCCESS Function completed successfully.

RTNC_FATAL Fatal error occurred.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 240

RTNC_NO_RESOURCE Resource allocation failure.

RTNC_IO_ERR Transfer or peripheral operation failed.

RTNC_TIMEOUT Function timed out.

RTNC_NOT_SUPPORTED API, feature or configuration is not supported.

RTNC_NOT_FOUND Requested object not found.

RTNC_ALREADY_EXIST Object already created or allocated.

RTNC_ABORT Operation aborted by software.

RTNC_INVALID_OP Invalid operation.

RTNC_WANT_READ Read operation requested.

RTNC_WANT_WRITE Write operation requested.

RTNC_INVALID_FMT Invalid format.

RTNC_INVALID_PATH Invalid path.

RTNC_CORRUPT Data corrupted.

RTNC_FULL Container full.

RTNC_OVERFLOW Overflow

RTNC_FAIL Operation failed.

Architecture Definitions
Definitions used by the architecture module to set the CPU architecture, compiler and endianness.

BP_ARCH_CPU_ARM_V5Macro

<bp_arch_def.h>

ARM v5, for example the ARM9.

BP_ARCH_CPU_ARM_V6Macro

<bp_arch_def.h>

ARM v6, for example the ARM11.

BP_ARCH_CPU_ARM_V6MMacro

<bp_arch_def.h>

ARM v6m, for example the Cortex-M0.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 241

BP_ARCH_CPU_ARM_V7ARMacro

<bp_arch_def.h>

ARM v7ar, for example the Cortex-A9 or Cortex-R5.

BP_ARCH_CPU_ARM_V7MMacro

<bp_arch_def.h>

ARM v7m, for example the Cortex-M4.

BP_ARCH_CPU_ARM_V8AMacro

<bp_arch_def.h>

ARM v8a, for example the Cortex-A53.

BP_ARCH_CPU_ARM_V8MMacro

<bp_arch_def.h>

ARM v8a, for example the Cortex-M23.

BP_ARCH_CPU_ARM_V8RMacro

<bp_arch_def.h>

ARM v8r, for example the Cortex-R52.

BP_ARCH_CPU_LINUXMacro

<bp_arch_def.h>

Linux, any architecture.

BP_ARCH_CPU_MICROBLAZEMacro

<bp_arch_def.h>

Xilinx Microblaze soft processor.

BP_ARCH_CPU_NONEMacro

<bp_arch_def.h>

CPU architectures definitions. The macro BP_ARCH_CPU will be defined to one of the following by the
architecture port.No or invalid architecture.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 242

BP_ARCH_CPU_POWERISA2Macro

<bp_arch_def.h>

PowerISA 2.xx.

BP_ARCH_CPU_SPARCV8Macro

<bp_arch_def.h>

SPARC v8.

BP_ARCH_CPU_SPARCV9Macro

<bp_arch_def.h>

SPARC v9.

GPIO Driver
The GPIO driver declarations found in this module serves as the basis of GPIO drivers usually used in
combination with the GPIO module to access GPIO peripherals. All GPIO drivers are composed of a
standard set of API expected by the GPIO module in addition to any number of implementation-specific
functions. The driver specific functions can be used by the application to access advanced features of a
GPIO peripheral not exposed through the standard API. Note that usage of those extended
functionalities is non-portable contrary to the standard API. The GPIO module API function
bp_gpio_drv_hndl_get() function can be used to retrieve the driver handle associated with a GPIO
module instance, and can subsequently be used to call the driver directly. See the individual driver’s
documentation for details of the extended functions.

In addition to accessing extended functionalities, an application can access the driver standard API
directly bypassing the GPIO module. This reduces the call overhead. Contrary to most types of drivers,
the GPIO drivers are usually thread-safe by design while other drivers usually require the top-level
modules mutexes to be thread-safe.

Finally, as yet another feature of the GPIO driver API, it can be invoked in a standalone fashion without
a GPIO module instance. This reduces the RAM overhead of using a GPIO peripheral. In this case the
driver create function is called directly by the application in a matter similar to bp_gpio_create() to
instantiate the driver.

bp_gpio_drv_create_tData Type

<bp_gpio_drv.h>

GPIO driver’s create function.

Prototype int bp_gpio_drv_create_t (const bp_gpio_board_def_t * p_def,
bp_gpio_drv_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 243

Parameters p_def Board definition of the GPIO peripheral to create.
p_hndl Handle to the created GPIO driver instance.

Returned
Errors

RTNC_SUCCESS
RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

bp_gpio_drv_data_get_tData Type

<bp_gpio_drv.h>

GPIO driver’s data_get function. Returns the data state of pin number pin of bank bank.

Prototype int bp_gpio_drv_data_get_t (bp_gpio_drv_hndl_t hndl,
uint32_t bank,
uint32_t pin,
uint32_t * data);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to query.
bank Bank number of the pin to query.
pin Pin number of the pin to query.
data Pointer to the variable that will receive the data.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_drv_data_set_tData Type

<bp_gpio_drv.h>

GPIO driver’s data_set function. Set the state of pin number pin of bank bank to the data specified by
data.

Prototype int bp_gpio_drv_data_set_t (bp_gpio_drv_hndl_t hndl,
uint32_t bank,
uint32_t pin,
uint32_t data);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 244

Parameters hndl Handle of the interface to set.
bank Bank number of the pin to set.
pin Pin number of the pin to set.
data State of the pin to set.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_drv_data_tog_tData Type

<bp_gpio_drv.h>

Toggle the state of a GPIO pin. Toggle the data of pin number pin of bank bank.

Prototype int bp_gpio_drv_data_tog_t (bp_gpio_drv_hndl_t hndl,
uint32_t bank,
uint32_t pin);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the interface to toggle.
bank Bank number of the pin to toggle.
pin Pin number of the pin to toggle.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_drv_destroy_tData Type

<bp_gpio_drv.h>

GPIO driver’s destroy function.

Prototype int bp_gpio_drv_destroy_t (bp_gpio_drv_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the GPIO driver instance to destroy.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 245

bp_gpio_drv_dir_get_tData Type

<bp_gpio_drv.h>

GPIO driver’d dir_get function. Returns the direction of pin number pin of bank bank.

Prototype int bp_gpio_drv_dir_get_t (bp_gpio_drv_hndl_t hndl,
uint32_t bank,
uint32_t pin,
bp_gpio_ dir);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to query.
bank Bank number of the pin to query.
pin Pin number of the pin to query.
dir Pointer to the variable that will receive the direction.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_drv_dir_set_tData Type

<bp_gpio_drv.h>

GPIO driver’s dir_set function. Sets the direction of pin number pin of bank bank to the direction
specified by dir.

Prototype int bp_gpio_drv_dir_set_t (bp_gpio_drv_hndl_t hndl,
uint32_t bank,
uint32_t pin,
bp_gpio_dir_t dir);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to set.
bank Bank number of the pin to set.
pin Pin number of the pin to set.
dir Direction of the pin to set.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 246

bp_gpio_drv_dis_tData Type

<bp_gpio_drv.h>

GPIO driver’s disable function.

Prototype int bp_gpio_drv_dis_t (bp_gpio_drv_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the GPIO driver instance to disable.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_drv_en_tData Type

<bp_gpio_drv.h>

GPIO driver’s enable function.

Prototype int bp_gpio_drv_en_t (bp_gpio_drv_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the GPIO driver instance to enable.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_drv_is_en_tData Type

<bp_gpio_drv.h>

GPIO driver’s is_en function.

Prototype int bp_gpio_drv_is_en_t (bp_gpio_drv_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 247

Parameters hndl Handle of the GPIO driver instance to query.
p_is_en Driver state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_drv_reset_tData Type

<bp_gpio_drv.h>

GPIO driver’s reset function.

Prototype int bp_gpio_drv_reset_t (bp_gpio_drv_hndl_t hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the GPIO driver to reset.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

BP_GPIO_DRV_HNDL_IS_NULL()Macro

<bp_gpio_drv.h>

Evaluates if a GPIO driver handle is NULL.

Prototype BP_GPIO_DRV_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BP_GPIO_DRV_NULL_HNDLMacro

<bp_gpio_drv.h>

NULL GPIO driver handle.

I2C Driver
The I2C driver declarations found in this module serves as the basis of I2C drivers usually used in
combination with the I2C module to access I2C peripherals. All I2C drivers are composed of a standard

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 248

set of API expected by the I2C module in addition to any number of implementation specific functions.
The driver specific functions can be used by the application to access advanced features of a I2C
peripheral not exposed through the standard API. Note that usage of those extended functionalities is
non-portable contrary to the standard API. The I2C module API function bp_i2c_drv_hndl_get()
function can be used to retrieve the driver handle associated with a I2C module instance, and can
subsequently be used to call the driver directly. See the individual driver’s documentation for details of
the extended functions.

In addition to accessing extended functionalities, an application can access the driver standard API
directly bypassing the I2C module. This reduces the call overhead at the cost of thread-safety as bare
driver functions are usually not thread-safe when called directly. If thread-safety is required while
calling driver functions directly, it is possible to use bp_i2c_acquire() and bp_i2c_release() to
lock the I2C module preventing it from being accessed by other threads.

Finally, as yet another feature of the I2C driver API, it can be invoked in a standalone fashion without a
UART module instance. This reduces the RAM overhead of using an I2C peripheral by dropping the I2C
module mutexes and internal data structures. In this case the driver create function is called directly by
the application in a matter similar to bp_i2c_create() to instantiate the driver. In this case thread
safety has to be managed by the application, either using external mutexes or by ensuring that only one
thread accesses the I2C peripheral.

bp_i2c_drv_cfg_get_tData Type

<bp_i2c_drv.h>

I2C driver’s configuration get function.

Prototype int bp_i2c_drv_cfg_get_t (bp_i2c_drv_hndl_t hndl,
bp_i2c_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C driver to query.
p_cfg Pointer to the I2C configuration.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_cfg_set_tData Type

<bp_i2c_drv.h>
Prototype int bp_i2c_drv_cfg_set_t (bp_i2c_drv_hndl_t hndl,

const bp_i2c_cfg_t * p_cfg,
uint32_t timeout_ms);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 249

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C driver to configure.
p_cfg I2C configuration.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_i2c_drv_create_tData Type

<bp_i2c_drv.h>

I2C driver’s open function.

Prototype int bp_i2c_drv_create_t (const bp_i2c_board_def_t * p_def,
bp_i2c_drv_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_def Board definition of the I2C driver to initialize.
p_hndl Pointer to the newly created I2C interface.

Returned
Errors

RTNC_SUCCESS
RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

bp_i2c_drv_destroy_tData Type

<bp_i2c_drv.h>

I2C driver’s destroy function.

Prototype int bp_i2c_drv_destroy_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 250

Parameters hndl Handle of the I2C driver to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_dis_tData Type

<bp_i2c_drv.h>

I2C driver’s disable function.

Prototype int bp_i2c_drv_dis_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C driver to disable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_en_tData Type

<bp_i2c_drv.h>

I2C driver’s enable function.

Prototype int bp_i2c_drv_en_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C driver to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 251

bp_i2c_drv_flush_tData Type

<bp_i2c_drv.h>

I2C driver’s flush function.

Prototype int bp_i2c_drv_flush_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the interface to flush.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_idle_wait_tData Type

<bp_i2c_drv.h>

I2C driver’s idle wait function.

Prototype int bp_i2c_drv_idle_wait_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to wait.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_is_en_tData Type

<bp_i2c_drv.h>

I2C driver is_en function.

Prototype int bp_i2c_drv_is_en_t (bp_i2c_drv_hndl_t hndl,
bool * p_is_en);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 252

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C driver to query.
p_is_en Interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_i2c_drv_reset_tData Type

<bp_i2c_drv.h>

I2C drivers’s reset function.

Prototype int bp_i2c_drv_reset_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the I2C driver to reset.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_xfer_async_abort_tData Type

<bp_i2c_drv.h>

I2C driver’s asynchronous transfer abort function.

Prototype int bp_i2c_drv_xfer_async_abort_t (bp_i2c_drv_hndl_t hndl,
size_t * p_tf_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the interface to abort.
p_tf_len Amount of data transferred.
timeout_ms Timeout value in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 253

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_xfer_async_tData Type

<bp_i2c_drv.h>

I2C driver asynchronous transfer function.

Prototype int bp_i2c_drv_xfer_async_t (bp_i2c_drv_hndl_t hndl,
bp_i2c_tf_t * p_tf,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to use for the transfer.
p_tf Transfer parameters.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_xfer_tData Type

<bp_i2c_drv.h>

I2C driver’s transfer function.

Prototype int bp_i2c_drv_xfer_t (bp_i2c_drv_hndl_t hndl,
bp_i2c_tf_t * p_tf,
size_t * p_tf_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the interface to use.
p_tf Pointer to an bp_i2c_tf_t structure describing the transfer to per-

form.
p_tf_len
timeout_ms Timeout value in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 254

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

BP_I2C_DRV_HNDL_IS_NULL()Macro

<bp_i2c_drv.h>

Evaluates if an I2C driver handle is NULL.

Prototype BP_I2C_DRV_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BP_I2C_DRV_NULL_HNDLMacro

<bp_i2c_drv.h>

NULL I2C driver handle.

SPI Driver
The SPI driver declarations found in this module serves as the basis of SPI drivers usually used in
combination with the SPI module to access SPI peripherals. All SPI drivers are composed of a standard
set of API expected by the SPI module in addition to any number of implementation-specific functions.
The driver specific functions can be used by the application to access advanced features of a SPI
peripheral not exposed through the standard API. Note that usage of those extended functionalities is
non-portable contrary to the standard API. The SPI module API function bp_spi_drv_hndl_get()
function can be used to retrieve the driver handle associated with a SPI module instance, and can
subsequently be used to call the driver directly. See the individual driver’s documentation for details of
the extended functions.

In addition to accessing extended functionalities, an application can access the driver standard API
directly bypassing the SPI module. This reduces the call overhead at the cost of thread-safety as bare
driver functions are usually not thread-safe when called directly. If thread-safety is required while
calling driver functions directly, it is possible to use bp_spi_slave_sel() and
bp_spi_slave_desel() to lock the SPI module preventing it from being accessed by other threads.

Finally, as yet another feature of the SPI driver API, it can be invoked in a standalone fashion without a
SPI module instance. This reduces the RAM overhead of using an SPI peripheral by dropping the SPI
module mutexes and internal data structures. In this case the driver create function is called directly by
the application in a matter similar to bp_spi_create() to instantiate the driver. In this case thread
safety has to be managed by the application, either using external mutexes or by ensuring that only one
thread accesses the SPI peripheral.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 255

bp_spi_drv_cfg_get_tData Type

<bp_spi_drv.h>

SPI driver’s cfg_get function.

Prototype int bp_spi_drv_cfg_get_t (bp_spi_drv_hndl_t hndl,
bp_spi_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI driver to query.
p_cfg Pointer to the SPI configuration.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_cfg_set_tData Type

<bp_spi_drv.h>

SPI driver’s cfg_set function.

Prototype int bp_spi_drv_cfg_set_t (bp_spi_drv_hndl_t hndl,
const bp_spi_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI driver to configure.
p_cfg SPI configuration.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_SUPPORTED
RTNC_TIMEOUT
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 256

bp_spi_drv_create_tData Type

<bp_spi_drv.h>

SPI driver’s create function.

Prototype int bp_spi_drv_create_t (const bp_spi_board_def_t * p_def,
bp_spi_drv_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_def Board definition of the SPI peripheral to initialize.
p_hndl Pointer to the newly created SPI driver instance.

Returned
Errors

RTNC_SUCCESS
RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

bp_spi_drv_destroy_tData Type

<bp_spi_drv.h>

SPI driver’s destroy function.

Prototype int bp_spi_drv_destroy_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI driver to destroy.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_dis_tData Type

<bp_spi_drv.h>

SPI driver’s disable function.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 257

Prototype int bp_spi_drv_dis_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI driver to disable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_en_tData Type

<bp_spi_drv.h>

SPI driver’s enable function.

Prototype int bp_spi_drv_en_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI driver to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_flush_tData Type

<bp_spi_drv.h>

SPI driver’s flush function.

Prototype int bp_spi_drv_flush_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 258

Parameters hndl Handle of the driver to flush.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_idle_wait_tData Type

<bp_spi_drv.h>

SPI driver’s idle wait function.

Prototype int bp_spi_drv_idle_wait_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to wait.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_is_en_tData Type

<bp_spi_drv.h>

SPI driver’s is_en function.

Prototype int bp_spi_drv_is_en_t (bp_spi_drv_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI interface to check.
p_is_en Interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 259

bp_spi_drv_reset_tData Type

<bp_spi_drv.h>

SPI driver’s reset function.

Prototype int bp_spi_drv_reset_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI interface to reset.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_slave_desel_tData Type

<bp_spi_drv.h>

SPI driver’s slave deselect function.

Prototype int bp_spi_drv_slave_desel_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI driver to wait on.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_slave_sel_tData Type

<bp_spi_drv.h>

SPI driver’d slave select function.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 260

Prototype int bp_spi_drv_slave_sel_t (bp_spi_drv_hndl_t hndl,
uint32_t ss_id,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the SPI driver to wait on.
ss_id Numeric id of the slave select line to assert.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_xfer_async_abort_tData Type

<bp_spi_drv.h>

SPI driver’s asynchronous transfer abort function.

Prototype int bp_spi_drv_xfer_async_abort_t (bp_spi_drv_hndl_t hndl,
size_t * p_tx_len,
size_t * p_rx_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to abort.
p_tx_len Pointer to the amount of data already transferred.
p_rx_len Pointer to the amount of data already received.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_xfer_async_tData Type

<bp_spi_drv.h>

SPI driver’s asynchronous transfer function.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 261

Prototype int bp_spi_drv_xfer_async_t (bp_spi_drv_hndl_t hndl,
bp_spi_tf_t * p_tf,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to use for the transfer.
p_tf Transfer parameters.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_xfer_tData Type

<bp_spi_drv.h>

SPI driver’s xfer function.

Prototype int bp_spi_drv_xfer_t (bp_spi_drv_hndl_t hndl,
bp_spi_tf_t * p_tf,
size_t * p_tf_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the interface to use for the transfer.
p_tf Pointer to an bp_spi_tf_t structure describing the transfer to perform.
p_tf_len Amount of data actually transferred.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

BP_SPI_DRV_HNDL_IS_NULL()Macro

<bp_spi_drv.h>

Evaluates if an SPI driver handle is NULL.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 262

Prototype BP_SPI_DRV_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BP_SPI_DRV_NULL_HNDLMacro

<bp_spi_drv.h>

NULL SPI driver handle.

UART Driver
The UART driver declarations found in this module serves as the basis of UART drivers usually used in
combination with the UART module to access UART peripherals. All UART drivers are composed of a
standard set of API expected by the UART module in addition to any number of implementation-specific
functions. The driver specific functions can be used by the application to access advanced features of a
UART peripheral not exposed through the standard API. Note that usage of those extended
functionalities is non-portable contrary to the standard API. The UART module API function
bp_uart_drv_hndl_get() function can be used to retrieve the driver handle associated with a
UART module instance, and can subsequently be used to call the driver directly. See the individual
driver’s documentation for details of the extended functions.

In addition to accessing extended functionalities, an application can access the driver’s standard API
directly bypassing the UART module. This reduces the call overhead at the cost of thread-safety as bare
driver functions are usually not thread-safe when called directly. If thread-safety is required while
calling driver functions directly, it is possible to use bp_uart_acquire() and bp_uart_release()
to lock the UART module preventing its access by other threads.

Finally, as yet another feature of the UART driver API, it can be invoked in a standalone fashion without
a UART module instance. This reduces the RAM overhead of using a UART peripheral by dropping the
UART module mutexes and internal data structures. In this case the driver create function is called
directly by the application in a matter similar to bp_uart_create() to instantiate the driver. In this
case thread safety has to be managed by the application, either using external mutexes or by ensuring
that only one thread accesses the UART peripheral.

bp_uart_cfg_get_tData Type

<bp_uart_drv.h>

UART driver’s cfg_get function.

Prototype int bp_uart_cfg_get_t (bp_uart_drv_hndl_t hndl,
bp_uart_cfg_t * p_cfg);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 263

Parameters hndl Handle of the UART driver to query.
p_cfg Pointer to the UART configuration.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_cfg_set_tData Type

<bp_uart_drv.h>

UART driver’s cfg_set function.

Prototype int bp_uart_drv_cfg_set_t (bp_uart_drv_hndl_t hndl,
const bp_uart_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART driver to configure.
p_cfg UART configuration.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_uart_drv_create_tData Type

<bp_uart_drv.h>

UART driver’s create function.

Prototype int bp_uart_drv_create_t (const bp_uart_board_def_t * p_def,
bp_uart_drv_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_def Board definition of the UART peripheral to initialize.
p_hndl Pointer to the newly created UART driver instance.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 264

Returned
Errors

RTNC_SUCCESS
RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

bp_uart_drv_destroy_tData Type

<bp_uart_drv.h>

UART driver’s destroy function.

Prototype int bp_uart_drv_destroy_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART driver instance to enable.
timeout_ms

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_SUPPORTED
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_dis_tData Type

<bp_uart_drv.h>

UART driver’d disable function.

Prototype int bp_uart_drv_dis_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART driver to disable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 265

bp_uart_drv_en_tData Type

<bp_uart_drv.h>

UART driver’s enable function.

Prototype int bp_uart_drv_en_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART driver to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_is_en_tData Type

<bp_uart_drv.h>

UART driver’s is_en function.

Prototype int bp_uart_drv_is_en_t (bp_uart_drv_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART driver to query.
p_is_en Interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_uart_drv_reset_tData Type

<bp_uart_drv.h>

UART driver’s reset function.

Prototype int bp_uart_drv_reset_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 266

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the UART driver to reset.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_rx_async_abort_tData Type

<bp_uart_drv.h>

UART driver’s asynchronous receive abort function.

Prototype int bp_uart_drv_rx_async_abort_t (bp_uart_drv_hndl_t hndl,
size_t * p_rx_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to abort.
p_rx_len Pointer to the number of bytes received, can be NULL.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_rx_async_tData Type

<bp_uart_drv.h>

UART driver’s asynchronous receive function.

Prototype int bp_uart_drv_rx_async_t (bp_uart_drv_hndl_t hndl,
bp_uart_tf_t * p_tf,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 267

Parameters hndl Handle of the driver to use for reception.
p_tf Transfer parameters.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_rx_flush_tData Type

<bp_uart_drv.h>

UART driver’s receive flush function.

Prototype int bp_uart_drv_rx_flush_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to flush.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_rx_idle_wait_tData Type

<bp_uart_drv.h>

UART driver’s receive idle wait function.

Prototype int bp_uart_drv_rx_idle_wait_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to wait.
timeout_ms Timeout in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 268

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_rx_tData Type

<bp_uart_drv.h>

UART driver’s receive function.

Prototype int bp_uart_drv_rx_t (bp_uart_drv_hndl_t hndl,
void * p_buf,
size_t len,
size_t * p_rx_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to use for reception.
p_buf Pointer to the buffer that will receive the data.
len Length of the data to receive in bytes.
p_rx_len
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

bp_uart_drv_tx_async_abort_tData Type

<bp_uart_drv.h>

UART driver’s asynchronous transmit abort function.

Prototype int bp_uart_drv_tx_async_abort_t (bp_uart_drv_hndl_t hndl,
size_t * p_tx_len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 269

Parameters hndl Handle of the driver to abort.
p_tx_len Pointer to the number of bytes transmitted, can be NULL.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_tx_async_tData Type

<bp_uart_drv.h>

UART driver’s asynchronous transmit function.

Prototype int bp_uart_drv_tx_async_t (bp_uart_drv_hndl_t hndl,
bp_uart_tf_t * p_tf,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to use for reception.
p_tf Transfer parameters.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_tx_flush_tData Type

<bp_uart_drv.h>

UART driver’s transmit flush function.

Prototype int bp_uart_drv_tx_flush_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to flush.
timeout_ms Timeout in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 270

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_tx_idle_wait_tData Type

<bp_uart_drv.h>

UART driver’s transmit idle wait function.

Prototype int bp_uart_drv_tx_idle_wait_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to wait.
timeout_ms Timeout in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_tx_tData Type

<bp_uart_drv.h>

UART driver’s transmit function.

Prototype int bp_uart_drv_tx_t (bp_uart_drv_hndl_t hndl,
const void * p_buf,
size_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the driver to use for transmission.
p_buf Pointer to the buffer to transmit.
len Length of the data to transmit in bytes.
timeout_ms Timeout value in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 271

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

BP_UART_DRV_HNDL_IS_NULL()Macro

<bp_uart_drv.h>

Evaluates if a UART driver handle is NULL.

Prototype BP_UART_DRV_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BP_UART_DRV_NULL_HNDLMacro

<bp_uart_drv.h>

NULL UART driver handle.

Timer Implementation
The declarations found in this module serves as the basis of the timer module implementations. User
application should not usually call these functions directly and should instead use the timer module API.

bp_timer_impl_halt()Function

<bp_timer_impl.h>

Halts the timer processing.

This is an internal function and should not be called from application code.

Prototype int bp_timer_impl_halt ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 272

bp_timer_impl_init()Function

<bp_timer_impl.h>

Timer implementation init function.

This is an internal function and should not be called from application code.

Prototype int bp_timer_impl_init ();

Attributes Blocking ISR-safe Critical safe Thread-safe

7 7 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_impl_next_update()Function

<bp_timer_impl.h>

Updates the next expiration target.

This is an internal function and should not be called from application code.

Prototype int bp_timer_impl_next_update (uint64_t target);

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Parameters target Updated target.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_timer_impl_resume()Function

<bp_timer_impl.h>

Resumes the timer processing.

This is an internal function and should not be called from application code.

Prototype int bp_timer_impl_resume ();

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 273

Attributes Blocking ISR-safe Critical safe Thread-safe

7 3 3 3

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

NOR Driver
The QSPI memory driver, not to be confused with the QSPI memory media driver, provides the interface
with a specific QSPI memory chip. The QSPI memory driver abstracts various aspects of interacting a
QSPI memory such as the command set, initialization sequence and error handling.

bp_qspi_mem_drv_cfg_get_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s configuration get function.

Prototype int bp_qspi_mem_drv_cfg_get_t (bp_qspi_mem_drv_hndl_t hndl,
bp_qspi_mem_cfg_t * p_cfg);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to query.
p_cfg Pointer to the returned configuration.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_qspi_mem_drv_cfg_set_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s configuration set function.

Prototype int bp_qspi_mem_drv_cfg_set_t (bp_qspi_mem_drv_hndl_t hndl,
const bp_qspi_mem_cfg_t * p_cfg,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 274

Parameters hndl Handle of the QSPI memory driver instance to configure.
p_cfg Pointer to the configuration to apply.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_IO
RTNC_FATAL

bp_qspi_mem_drv_create_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s create function.

Prototype int bp_qspi_mem_drv_create_t (const bp_qspi_mem_board_def_t * p_def,
bp_qspi_mem_drv_hndl_t * p_hndl);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters p_def Board definition of the QSPI memory.
p_hndl Pointer to the returned handle.

Returned
Errors

RTNC_SUCCESS
RTNC_RESOURCE
RTNC_FATAL

bp_qspi_mem_drv_destroy_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s destroy function.

Prototype int bp_qspi_mem_drv_destroy_t (bp_qspi_mem_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to destroy.
timeout_ms Timeout value in milliseconds.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 275

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_qspi_mem_drv_dis_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s disable function.

Prototype int bp_qspi_mem_drv_dis_t (bp_qspi_mem_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to disable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_qspi_mem_drv_en_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s enable function.

Prototype int bp_qspi_mem_drv_en_t (bp_qspi_mem_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 276

bp_qspi_mem_drv_erase_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s erase function.

Prototype int bp_qspi_mem_drv_erase_t (bp_qspi_mem_drv_hndl_t hndl,
uint64_t addr,
uint64_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to erase.
addr Media start address to erase.
len Length of the area to erase.
timeout_ms Timeout value in millisecond

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_qspi_mem_drv_is_en_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s is enabled function.

Prototype int bp_qspi_mem_drv_is_en_t (bp_qspi_mem_drv_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to query.
p_is_en Interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_qspi_mem_drv_read_tData Type

<bp_qspi_mem_drv.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 277

QSPI memory driver’s read function.

Prototype int bp_qspi_mem_drv_read_t (bp_qspi_mem_drv_hndl_t hndl,
uint64_t addr,
void * p_dest,
uint64_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI driver instance to read from.
addr Source address.
p_dest Pointer to the buffer that will receive the data.
len Length of data to read in bytes.
timeout_ms Timeout value in millisecond

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_qspi_mem_drv_reset_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s reset function.

Prototype int bp_qspi_mem_drv_reset_t (bp_qspi_mem_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to reset.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_qspi_mem_drv_write_tData Type

<bp_qspi_mem_drv.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 278

QSPI memory driver’s write function.

Prototype int bp_qspi_mem_drv_write_t (bp_qspi_mem_drv_hndl_t hndl,
uint64_t addr,
const void * p_src,
uint64_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI driver instance to write to.
addr Destination address.
p_src Pointer to the data to write.
len
timeout_ms

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_qspi_mem_drv_xip_dis_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s execute in place disable function.

Prototype int bp_qspi_mem_drv_xip_dis_t (bp_qspi_mem_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to configure.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_IO
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 279

bp_qspi_mem_drv_xip_en_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s execute in place enable function.

Prototype int bp_qspi_mem_drv_xip_en_t (bp_qspi_mem_drv_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to configure.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_IO
RTNC_FATAL

bp_qspi_mem_drv_xip_is_en_tData Type

<bp_qspi_mem_drv.h>

QSPI memory driver’s execute in place query function.

Prototype int bp_qspi_mem_drv_xip_is_en_t (bp_qspi_mem_drv_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to query.
p_is_en Pointer to the returned state, true if XIP mode is enabled, false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_qspi_mem_prop_get_tData Type

<bp_qspi_mem_drv.h>

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 280

QSPI memory driver’s properties get function.

Prototype int bp_qspi_mem_prop_get_t (bp_qspi_mem_drv_hndl_t hndl,
bp_qspi_mem_prop_t * p_prop);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the QSPI memory driver instance to query.
p_prop Pointer to the returned properties.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

BP_QSPI_MEM_DRV_HNDL_IS_NULL()Macro

<bp_qspi_mem_drv.h>

Evaluates if a QSPI memory driver handle is NULL.

Prototype BP_QSPI_MEM_DRV_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.

BP_QSPI_MEM_DRV_NULL_HNDLMacro

<bp_qspi_mem_drv.h>

NULL QSPI memory driver handle.

Media Driver
The media driver declarations found in this module serve as the basis of every media driver
implementation. The media drivers are usually used in combination with the media module to provide a
unified interface toward various non-volatile storage media.

Note that many media driver implementations layer a generic media driver on top of a storage
technology specific driver. For example accessing a QSPI NOR media is done through a QSPI memory
driver which in turn provides a generic media driver interface for the media module.

The media module API function bp_media_drv_hndl_get() function can be used to retrieve the
driver handle associated with a media module instance, and can subsequently be used to call the driver
directly. See the individual media driver’s documentation for details of the extended functions.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 281

bp_media_drv_dis_tData Type

<bp_media_drv.h>

Media driver’s disable function.

Prototype int bp_media_drv_dis_t (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media driver instance to disable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_media_drv_en_tData Type

<bp_media_drv.h>

Media driver’s enable function.

Prototype int bp_media_drv_en_t (bp_media_hndl_t hndl,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media driver instance to enable.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_media_drv_erase_tData Type

<bp_media_drv.h>

Media driver’s erase function.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 282

Prototype int bp_media_drv_erase_t (bp_media_hndl_t hndl,
uint64_t addr,
uint64_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media module driver instance to erase.
addr Media start address to erase.
len Length of the area to erase.
timeout_ms Timeout value in millisecond

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_media_drv_is_en_tData Type

<bp_media_drv.h>

Media driver’s is_enabled function.

Prototype int bp_media_drv_is_en_t (bp_media_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media driver instance to query.
p_is_en Interface state, true if enabled false otherwise.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_media_drv_prop_get_tData Type

<bp_media_drv.h>

Media driver’s property get function.

Prototype int bp_media_drv_prop_get_t (bp_media_hndl_t hndl,
bp_media_prop_t * p_prop);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 283

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media driver instance to query.
p_prop Pointer to the returned properties.

Returned
Errors

RTNC_SUCCESS
RTNC_FATAL

bp_media_drv_read_tData Type

<bp_media_drv.h>

Media driver’s read function.

Prototype int bp_media_drv_read_t (bp_media_hndl_t hndl,
uint64_t addr,
void * p_dest,
uint64_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media driver instance to read from.
addr Source address.
p_dest Pointer to the buffer that will receive the data.
len Length of data to read in bytes.
timeout_ms Timeout value in millisecond

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

bp_media_drv_reset_tData Type

<bp_media_drv.h>

Media driver’s reset function.

Prototype int bp_media_drv_reset_t (bp_media_hndl_t hndl,
uint32_t timeout_ms);

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

� �

�������
�	
�������������������� Chapter 17 API Reference Manual 284

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media driver instance to reset.
timeout_ms Timeout value in milliseconds.

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_media_drv_write_tData Type

<bp_media_drv.h>

Media driver’s write function.

Prototype int bp_media_drv_write_t (bp_media_hndl_t hndl,
uint64_t addr,
const void * p_src,
uint64_t len,
uint32_t timeout_ms);

Attributes Blocking ISR-safe Critical safe Thread-safe

3 7 7 3

Parameters hndl Handle of the media driver instance to write to.
addr Destination address.
p_src Pointer to the data to write.
len Length of data to write in bytes.
timeout_ms Timeout value in millisecond

Returned
Errors

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_IO
RTNC_FATAL

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

Chapter

18
Document Revision History

The revision history of the BASEplatform user manual and reference manuals can be found within the
BASEplatform source package.

BASEplatform User Manual www.jblopen.com

https://www.jblopen.com

	Introduction
	About the User Manual
	Audience
	Additional Documentation

	Notation and Conventions
	Size and Speed Units
	Text Formatting
	Abbreviations and Acronyms

	What is the BASEplatform
	Introduction
	Key Features
	Requirements
	Timebase Recommendations

	Bare-Metal, RTOS and Third-Party Software
	Native vs. Hosted
	Native Configuration
	Hosted Configuration

	Conclusion

	Modules Overview
	Introduction
	Top-Level Modules
	Hardware Specific Modules
	Integration Modules
	Conclusion

	Structure of the BASEplatform
	Introduction
	Configuration Files
	Platform Structure
	Simplified Platform Module Dependency Tree
	Architecture Level
	SoC Level
	Board Level

	Typical Peripheral Stack Dependency Tree
	Conclusion

	Module Lifecycle
	Introduction
	Multi-Instance Modules
	Single-Instance Modules
	Exceptions

	Lifecycle Overview
	Lifecycle Details
	Creating a Module
	Configuring a Module
	Enabling a Module
	Disabling a Module
	Resetting a Module
	Destroying a Module
	Transition and Recovery from an Error State

	Conclusion

	Memory Management
	Introduction
	Overview
	The Default Allocator
	To Free or Not to Free
	Self-Contained Allocator
	Allocator Drivers

	Usage
	Create an Allocator
	Set the Default Allocator
	Allocate and Free Memory From the Default Allocator
	Allocate and Free Memory From a Specific Allocator
	Query the Remaining Memory

	Conclusion

	Error Handling
	Introduction
	Overview
	Return Codes
	Fatal Errors
	Assertion Checks
	Recommended Method for Handling Return Codes
	Conclusion

	Configuration
	Introduction
	Overview
	Rationale

	Configuration Files
	bp_cfg.h
	bp_arch_def_cfg.h
	bp_board_def_cfg.h

	Conclusion

	Time and Timer
	Introduction
	Overview
	The Time Module
	The Timer Module

	Primary Timebase
	Initialization
	Time Module Usage
	Querying the Time
	Getting the Timebase Frequency
	Delays
	Busy-Wait and Interrupt Based Delays

	Timer Module Usage
	Creating and Destroying a Timer
	Timer Callback
	Starting a Timer
	Periodic Timer
	Restarting a Timer
	Stopping a Timer

	Conclusion

	Interrupt Management
	Introduction
	A Word on Platform Interrupt Support
	Initialization
	Usage
	Registering an Interrupt Service Routine
	Enabling an Interrupt
	Disabling an Interrupt
	Configuring an Interrupt Priority and Type

	Conclusion

	Critical Section and Spin Lock
	Introduction
	What's a Critical Section?
	What's a spinlock?
	Restrictions and Recommended Usage
	Critical Section Usage
	Spinlock Usage
	Alternative Acquire and Release API

	Conclusion

	Cache Management
	Introduction
	Overview
	Usage
	Invalidate the Entire Cache
	Cache Clean
	Cache Invalidate
	Query the Data Cache Line Size

	Conclusion

	Universal Asynchronous Receiver Transmitter (UART)
	Introduction
	Overview
	Lifecycle
	Create
	Configure
	Enable
	Disable
	Destroy
	Reset

	Basic Usage
	Transmission
	Reception
	Flushing the UART FIFOs

	Asynchronous I/O
	Asynchronous Transmission
	Asynchronous Reception
	Aborting an Asynchronous Transfer
	Waiting for a UART Interface to be Idle

	Direct Access to the Driver
	Retrieving the Driver Handle
	Locking the UART Module Instance
	Calling a Driver API
	Alternative Driver Calling Method

	Conclusion

	Serial Peripheral Interface (SPI)
	Introduction
	Overview
	Lifecycle
	Create
	Configure
	Enable
	Disable
	Destroy
	Reset

	Basic Usage
	Chip Select and De-Select
	Master SPI Transfer

	Asynchronous I/O
	Asynchronous Transfer
	Aborting an Asynchronous Transfer
	Waiting for an SPI Interface to be Idle

	Direct Access to the Driver
	Retrieving the Driver Handle
	Locking an SPI Module Instance
	Calling a Driver API
	Alternative Driver Calling Method

	Conclusion

	Inter-Integrated Circuit (I2C)
	Introduction
	Overview
	Lifecycle
	Create
	Configure
	Enable
	Disable
	Destroy
	Reset

	Basic Usage
	Master Transfer

	Asynchronous I/O
	Master Asyncrhronous Transfer
	Aborting an Asynchronous Transfer
	Waiting for an I2C Interface to be Idle

	Direct Access to the Driver
	Retrieving the Driver Handle
	Locking the I2C Module Instance
	Calling a Driver API
	Alternative Driver Calling Method

	Conclusion

	General Purpose I/O (GPIO)
	Introduction
	Overview
	Effect of Disabling or Resetting the GPIO Module
	Using the GPIO Module to Interface With I/O Expanders
	Pin and Bank Numbering

	Lifecycle
	Create
	Enable
	Disable
	Destroy
	Reset

	Usage
	Setting the Direction of a GPIO Pin
	Setting The State of a GPIO Pin
	Reading The State of a GPIO Pin

	Direct Access to the Driver
	Retrieving the Driver Handle
	Calling a Driver API
	Alternative Driver Calling Method

	Conclusion

	API Reference Manual
	Architecture
	bp_irq_flag_t
	BP_ARCH_ADDR_SZ
	BP_ARCH_ALIGN_MAX
	BP_ARCH_COMPILER
	BP_ARCH_CORE_ID_GET
	BP_ARCH_CPU
	BP_ARCH_DEBUG_BREAK
	BP_ARCH_ENDIAN
	BP_ARCH_INT_DIS
	BP_ARCH_INT_EN
	BP_ARCH_IS_CRIT
	BP_ARCH_IS_INT
	BP_ARCH_IS_INT_OR_CRIT
	BP_ARCH_MB
	BP_ARCH_PANIC
	BP_ARCH_RMB
	BP_ARCH_SEV
	BP_ARCH_WFE
	BP_ARCH_WFI
	BP_ARCH_WMB

	Cache Management
	bp_cache_dcache_inv_all
	bp_cache_dcache_max_line_get
	bp_cache_dcache_min_line_get
	bp_cache_dcache_range_clean
	bp_cache_dcache_range_cleaninv
	bp_cache_dcache_range_inv
	bp_cache_icache_inv_all

	Spinlocks
	bp_critical_section_enter
	bp_critical_section_exit
	bp_slock_acquire
	bp_slock_acquire_irq_dis
	bp_slock_acquire_irq_save
	bp_slock_release
	bp_slock_release_irq_en
	bp_slock_release_irq_restore
	bp_slock_t

	Time
	bp_time_freq_get
	bp_time_get
	bp_time_get32
	bp_time_get_ms
	bp_time_get_ms32
	bp_time_get_ns
	bp_time_get_ns32
	bp_time_halt
	bp_time_init
	bp_time_ms_to_raw
	bp_time_ms_to_raw32
	bp_time_ns_to_raw
	bp_time_ns_to_raw32
	bp_time_raw_to_ms
	bp_time_raw_to_ms32
	bp_time_raw_to_ns
	bp_time_raw_to_ns32
	bp_time_resume
	bp_time_sleep
	bp_time_sleep32
	bp_time_sleep_busy
	bp_time_sleep_busy32
	bp_time_sleep_busy_ms
	bp_time_sleep_busy_ns
	bp_time_sleep_ms
	bp_time_sleep_ns
	bp_time_sleep_yield
	bp_time_sleep_yield32
	bp_time_sleep_yield_ms
	bp_time_sleep_yield_ns

	Timers
	bp_timer_create
	bp_timer_destroy
	bp_timer_halt
	bp_timer_init
	bp_timer_restart
	bp_timer_restart_ms
	bp_timer_restart_ns
	bp_timer_resume
	bp_timer_start
	bp_timer_start_ms
	bp_timer_start_ns
	bp_timer_stop
	bp_timer_target_get
	bp_timer_action_t
	bp_timer_cb_t
	bp_timer_hndl_t

	Platform Clocks
	bp_clock_core_freq_get
	bp_clock_dis
	bp_clock_en
	bp_clock_freq_get
	bp_clock_gate_id_is_valid
	bp_clock_id_is_valid
	bp_clock_is_en

	Platform Resets
	bp_periph_reset_assert
	bp_periph_reset_deassert
	bp_periph_reset_id_is_valid
	bp_periph_reset_is_asserted

	Interrupt Management
	bp_int_arg_get
	bp_int_dis
	bp_int_en
	bp_int_id_is_valid
	bp_int_init
	bp_int_prio_get
	bp_int_prio_highest_get
	bp_int_prio_lowest_get
	bp_int_prio_next_get
	bp_int_prio_prev_get
	bp_int_prio_set
	bp_int_reg
	bp_int_src_dis
	bp_int_src_en
	bp_int_src_is_en
	bp_int_trig
	bp_int_type_get
	bp_int_type_set
	bp_int_type_t
	bp_int_handler_t
	BP_INT_ID_NONE
	BP_INT_TYPE_IS_VALID

	Interrupt SMP Extension
	bp_int_smp_src_dis
	bp_int_smp_src_en
	bp_int_smp_trig

	MEM
	bp_mem_alloc
	bp_mem_alloc_create
	bp_mem_alloc_destroy
	bp_mem_alloc_dflt_get
	bp_mem_alloc_dflt_set
	bp_mem_alloc_from
	bp_mem_free
	bp_mem_free_from
	bp_mem_lock_acquire
	bp_mem_lock_release
	bp_mem_alloc_def_t
	bp_mem_alloc_drv_t
	bp_mem_alloc_hndl_t
	bp_mem_alloc_inst_t
	BP_MEM_ALLOC_HNDL_IS_NULL
	BP_MEM_NULL_HNDL

	GPIO
	bp_gpio_create
	bp_gpio_data_get
	bp_gpio_data_set
	bp_gpio_data_tog
	bp_gpio_destroy
	bp_gpio_dir_get
	bp_gpio_dir_set
	bp_gpio_dis
	bp_gpio_drv_hndl_get
	bp_gpio_en
	bp_gpio_hndl_get
	bp_gpio_is_en
	bp_gpio_reset
	bp_gpio_dir_t
	bp_gpio_board_def_t
	bp_gpio_drv_hndl_t
	bp_gpio_hndl_t
	bp_gpio_soc_def_t
	BP_GPIO_HNDL_IS_NULL
	BP_GPIO_NULL_HNDL

	I2C
	bp_i2c_acquire
	bp_i2c_addr_is_10b
	bp_i2c_addr_is_valid
	bp_i2c_cfg_get
	bp_i2c_cfg_set
	bp_i2c_create
	bp_i2c_destroy
	bp_i2c_dis
	bp_i2c_drv_hndl_get
	bp_i2c_en
	bp_i2c_flush
	bp_i2c_hndl_get
	bp_i2c_idle_wait
	bp_i2c_is_en
	bp_i2c_release
	bp_i2c_reset
	bp_i2c_xfer
	bp_i2c_xfer_async
	bp_i2c_xfer_async_abort
	bp_i2c_action_t
	bp_i2c_dir_t
	bp_i2c_async_cb_t
	bp_i2c_board_def_t
	bp_i2c_cfg_t
	bp_i2c_drv_hndl_t
	bp_i2c_hndl_t
	bp_i2c_soc_def_t
	bp_i2c_tf_t
	BP_I2C_10B_SLV_ADDR_MASK
	BP_I2C_HNDL_IS_NULL
	BP_I2C_MAX_10B_SLV_ADDR
	BP_I2C_MAX_SLV_ADDR
	BP_I2C_MIN_10B_SLV_ADDR
	BP_I2C_NULL_HNDL
	BP_I2C_SLV_ADDR_MASK

	SPI
	bp_spi_cfg_get
	bp_spi_cfg_set
	bp_spi_create
	bp_spi_destroy
	bp_spi_dis
	bp_spi_drv_hndl_get
	bp_spi_en
	bp_spi_flush
	bp_spi_hndl_get
	bp_spi_idle_wait
	bp_spi_is_en
	bp_spi_reset
	bp_spi_slave_desel
	bp_spi_slave_sel
	bp_spi_xfer
	bp_spi_xfer_async
	bp_spi_xfer_async_abort
	bp_spi_action_t
	bp_spi_async_cb_t
	bp_spi_board_def_t
	bp_spi_cfg_t
	bp_spi_drv_hndl_t
	bp_spi_hndl_t
	bp_spi_soc_def_t
	bp_spi_tf_t
	BP_SPI_HNDL_IS_NULL
	BP_SPI_NULL_HNDL
	BP_SPI_SS_NONE

	UART
	bp_uart_acquire
	bp_uart_cfg_get
	bp_uart_cfg_set
	bp_uart_create
	bp_uart_destroy
	bp_uart_dis
	bp_uart_drv_hndl_get
	bp_uart_en
	bp_uart_hndl_get
	bp_uart_is_en
	bp_uart_release
	bp_uart_reset
	bp_uart_rx
	bp_uart_rx_async
	bp_uart_rx_async_abort
	bp_uart_rx_flush
	bp_uart_rx_idle_wait
	bp_uart_tx
	bp_uart_tx_async
	bp_uart_tx_async_abort
	bp_uart_tx_flush
	bp_uart_tx_idle_wait
	bp_uart_action_t
	bp_uart_parity_t
	bp_uart_stop_bits_t
	bp_uart_async_cb_t
	bp_uart_board_def_t
	bp_uart_cfg_t
	bp_uart_drv_hndl_t
	bp_uart_hndl_t
	bp_uart_soc_def_t
	bp_uart_tf_t
	BP_UART_ACTION_IS_VALID
	BP_UART_HNDL_IS_NULL
	BP_UART_NULL_HNDL
	BP_UART_PARITY_IS_VALID
	BP_UART_STOP_BITS_IS_VALID
	BP_UART_STOP_BITS_IS_VALID

	Storage Media
	bp_media_dis
	bp_media_en
	bp_media_erase
	bp_media_is_en
	bp_media_prop_get
	bp_media_read
	bp_media_reset
	bp_media_write
	bp_media_hndl_t
	bp_media_prop_t
	BP_MEDIA_HNDL_IS_NULL
	BP_MEDIA_NULL_HNDL

	QSPI Memory
	bp_qspi_mem_cfg_get
	bp_qspi_mem_cfg_set
	bp_qspi_mem_create
	bp_qspi_mem_destroy
	bp_qspi_mem_dis
	bp_qspi_mem_en
	bp_qspi_mem_erase
	bp_qspi_mem_is_en
	bp_qspi_mem_media_prop_get
	bp_qspi_mem_prop_get
	bp_qspi_mem_read
	bp_qspi_mem_reset
	bp_qspi_mem_write
	bp_qspi_mem_xip_dis
	bp_qspi_mem_xip_en
	bp_qspi_mem_xip_is_en
	bp_qspi_mem_ddr_mode_t
	bp_qspi_mem_mode_t
	bp_qspi_mem_timing_tbl_t
	bp_qspi_mem_board_def_t
	bp_qspi_mem_cfg_t
	bp_qspi_mem_drv_hndl_t
	bp_qspi_mem_inst_t
	bp_qspi_mem_op_timing_tbl_t
	bp_qspi_mem_part_def_t
	bp_qspi_mem_prop_t
	BP_QSPI_MEM_DDR_MODE_IS_VALID
	BP_QSPI_MEM_MODE_IS_VALID
	BP_QSPI_MEM_TIMING_TBL_COL_CNT

	Error Codes
	RTNC_*

	Architecture Definitions
	BP_ARCH_CPU_ARM_V5
	BP_ARCH_CPU_ARM_V6
	BP_ARCH_CPU_ARM_V6M
	BP_ARCH_CPU_ARM_V7AR
	BP_ARCH_CPU_ARM_V7M
	BP_ARCH_CPU_ARM_V8A
	BP_ARCH_CPU_ARM_V8M
	BP_ARCH_CPU_ARM_V8R
	BP_ARCH_CPU_LINUX
	BP_ARCH_CPU_MICROBLAZE
	BP_ARCH_CPU_NONE
	BP_ARCH_CPU_POWERISA2
	BP_ARCH_CPU_SPARCV8
	BP_ARCH_CPU_SPARCV9

	GPIO Driver
	bp_gpio_drv_create_t
	bp_gpio_drv_data_get_t
	bp_gpio_drv_data_set_t
	bp_gpio_drv_data_tog_t
	bp_gpio_drv_destroy_t
	bp_gpio_drv_dir_get_t
	bp_gpio_drv_dir_set_t
	bp_gpio_drv_dis_t
	bp_gpio_drv_en_t
	bp_gpio_drv_is_en_t
	bp_gpio_drv_reset_t
	BP_GPIO_DRV_HNDL_IS_NULL
	BP_GPIO_DRV_NULL_HNDL

	I2C Driver
	bp_i2c_drv_cfg_get_t
	bp_i2c_drv_cfg_set_t
	bp_i2c_drv_create_t
	bp_i2c_drv_destroy_t
	bp_i2c_drv_dis_t
	bp_i2c_drv_en_t
	bp_i2c_drv_flush_t
	bp_i2c_drv_idle_wait_t
	bp_i2c_drv_is_en_t
	bp_i2c_drv_reset_t
	bp_i2c_drv_xfer_async_abort_t
	bp_i2c_drv_xfer_async_t
	bp_i2c_drv_xfer_t
	BP_I2C_DRV_HNDL_IS_NULL
	BP_I2C_DRV_NULL_HNDL

	SPI Driver
	bp_spi_drv_cfg_get_t
	bp_spi_drv_cfg_set_t
	bp_spi_drv_create_t
	bp_spi_drv_destroy_t
	bp_spi_drv_dis_t
	bp_spi_drv_en_t
	bp_spi_drv_flush_t
	bp_spi_drv_idle_wait_t
	bp_spi_drv_is_en_t
	bp_spi_drv_reset_t
	bp_spi_drv_slave_desel_t
	bp_spi_drv_slave_sel_t
	bp_spi_drv_xfer_async_abort_t
	bp_spi_drv_xfer_async_t
	bp_spi_drv_xfer_t
	BP_SPI_DRV_HNDL_IS_NULL
	BP_SPI_DRV_NULL_HNDL

	UART Driver
	bp_uart_cfg_get_t
	bp_uart_drv_cfg_set_t
	bp_uart_drv_create_t
	bp_uart_drv_destroy_t
	bp_uart_drv_dis_t
	bp_uart_drv_en_t
	bp_uart_drv_is_en_t
	bp_uart_drv_reset_t
	bp_uart_drv_rx_async_abort_t
	bp_uart_drv_rx_async_t
	bp_uart_drv_rx_flush_t
	bp_uart_drv_rx_idle_wait_t
	bp_uart_drv_rx_t
	bp_uart_drv_tx_async_abort_t
	bp_uart_drv_tx_async_t
	bp_uart_drv_tx_flush_t
	bp_uart_drv_tx_idle_wait_t
	bp_uart_drv_tx_t
	BP_UART_DRV_HNDL_IS_NULL
	BP_UART_DRV_NULL_HNDL

	Timer Implementation
	bp_timer_impl_halt
	bp_timer_impl_init
	bp_timer_impl_next_update
	bp_timer_impl_resume

	NOR Driver
	bp_qspi_mem_drv_cfg_get_t
	bp_qspi_mem_drv_cfg_set_t
	bp_qspi_mem_drv_create_t
	bp_qspi_mem_drv_destroy_t
	bp_qspi_mem_drv_dis_t
	bp_qspi_mem_drv_en_t
	bp_qspi_mem_drv_erase_t
	bp_qspi_mem_drv_is_en_t
	bp_qspi_mem_drv_read_t
	bp_qspi_mem_drv_reset_t
	bp_qspi_mem_drv_write_t
	bp_qspi_mem_drv_xip_dis_t
	bp_qspi_mem_drv_xip_en_t
	bp_qspi_mem_drv_xip_is_en_t
	bp_qspi_mem_prop_get_t
	BP_QSPI_MEM_DRV_HNDL_IS_NULL
	BP_QSPI_MEM_DRV_NULL_HNDL

	Media Driver
	bp_media_drv_dis_t
	bp_media_drv_en_t
	bp_media_drv_erase_t
	bp_media_drv_is_en_t
	bp_media_drv_prop_get_t
	bp_media_drv_read_t
	bp_media_drv_reset_t
	bp_media_drv_write_t

	Document Revision History

