JBLopen
Embedded Software Insight

TREEspan File System API Reference Manual

RMO0002
February 12, 2020

Copyright

© 2017-2020 JBLopen Inc.

All rights reserved. No part of this document and any associated software may be reproduced,
distributed or transmitted in any form or by any means without the prior written consent of JBLopen Inc.

Disclaimer

While JBLopen Inc. has made every attempt to ensure the accuracy of the information contained in this
publication, JBLopen Inc. cannot warrant the accuracy of completeness of such information. JBLopen
Inc. may change, add or remove any content in this publication at any time without notice.

All the information contained in this publication as well as any associated material, including software,
scripts, and examples are provided “as is”. JBLopen Inc. makes no express or implied warranty of any
kind, including warranty of merchantability, noninfringement of intellectual property, or fitness for a
particular purpose. In no event shall JBLopen Inc. be held liable for any damage resulting from the use
or inability to use the information contained therein or any other associated material.

Trademark
JBLopen, the JBLopen logo, TREEspanw and BASEplatformm are trademarks of JBLopen Inc. All other
trademarks are trademarks or registered trademarks of their respective owners.

1

2

Contents

Overview

1.1 About TREEspan File System e e

1.2 Elements of the APl reference e
1.2 Functions e e e e e e e
1.2.2 Data Types . . . o i i e e e e e e e e
1.2.3 MaCroS . . v o v e e e e e e e e e e e e e e e

1.3 Function Attributes e e e e e e e
1.3.1 Blocking o o o e e e e e
1.3.2 ISR-Safe o e

1.4 APIConventions i i e e e e e e
141 Naming . . . o o e e e e e e e e
1.4.2 ErrorHandling e
1.4.3 Numerical Values of Macros and Enumeration Constants

API Reference

2.1 tsfs_commit e e e e

2.2 tsfs_create e e e

2.3 tsfs_destroy e e e e e e

2.4 tsfs_dir_close e e e e e e e e

2.5 tsfs_dir_create L e e 10
2.6 tsfs_dir_delete e e 10
2.7 tsfs_dir_exists e e e 11
2.8 tsfs dir_open e e e e e e 11
2.9 tsfs_dir_read e e e e e e e e 12
210 tsfs dropo e e e e e e e 12
211 tsfs_file_append e e 13
2.12 tsfs_file_close e e e 13
2.13 tsfs_file_create e e 14
2.14 tsfs_file_delete e e e 14
215 tsfs_file_exists e e e e e e e e e e e e e e e 15

=
N
~
_‘
>0
)
3
QL
&
7
Q
9
@
VCOPO® NOOOROUTUUUIAWR L KR

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Contents i
2.16 tsfs_file_extent_min_sz_set e e 16
2.17 tsfs_file_mode_reset e e e 16
2.18 tsfs_file_mode_set e e e e 16
2.19 tsfs_file_open e e e 17
2.20 tsfs_file_read e e e 17
221 tsfs_file_seek e e 18
2.22 tsfs_file_size_get e e 18
2.23 tsfs_file_truncate e e e 19
2.24 tsfs_file_write e e e e e e e e e e e e 19
225 tsfs_format e e e e e e e e e 20
226 tsfs_media_get e e e 20
227 tsfs_mount L e e e e e e 21
2.28 tsfs_revert e e e e e e e e 21
2.29 tsfs_sshot_create e e e e e 22
2.30 tsfs_sshot_delete e 22
2.31 tsfs_sshot_exists e e e e e 23
232 tsfs_trace_data_get e e 23
2.33 tsfs_unmount e e e e e e 24
2.34 tsfs_file_pos_offset_t e 24
235 tsfs_file_size_t e e e e 24
236 tsfs_cfg t. . . . e e e e e e e e e e 24
237 tsfs_dir_hndl_t e e 25
2.38 tsfs_file_hndl_t e e 25
2.39 TSFS_FILE_MODE_RD _ONLY o o e e e e e e e e e e e e e e e e e s e e e e 25
240 TSFS_MAX_INSTANCE_NAME_LEN e 25
241 TSFS_MAX_PATH_LEN e e e 25
242 RTNC * . e e 26
243 TSFS_FILE _SEEK * o e e e 26

3 Document Revision History 27

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

Overview

Welcome to the TREEspanm File System API reference manual. This reference manual covers the core,
file and directory API functions, data types and preprocessor definitions along with a description and
usage information for each API element. The API is written in ISO/IEC 9899:1999 (C99) compliant C
and designed to be portable between platforms and toolchains.

For convenience during development, all the information related to each individual API elements is also
reproduced within the relevant header source files in human readable format.

1.1 About TREEspan File System

TSFS is an embedded transactional file system, supporting a wide range of storage technologies,
including native flash support with both dynamic and static wear-leveling. Through its support for
snapshots and write transactions, TSFS provides the application with flexible, robust and fail-safe data
storage. Being RTOS and platform agnostic, with a minimum RAM requirement of less than 4KiB, TSFS
can be deployed on almost any platform.

1.2 Elements of the API reference
Each documented API element, be it a function, data type or preprocessor definition is presented using

a similar layout which is described below. This section briefly describes the various elements of the API
reference.

1.2.1 Functions

The most numerous and important API elements documented are functions. Below is an example of API
reference for a hypothetical function named example_func():

example_func()

<example/example.h>

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 1 Overview 2

Example function description.

Prototype int example_func (uint32_t argl,
uint32_t arg2);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters argl First argument’s description.

arg2 Second argument’s description.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

Example

uint32_t a
uint32_t b
int result;

Qu;
1lu;

result = example_func(a, b);
if(result != RTNC_SUCCESS) {
// Handle error.

}

Function Name

At the top of each API is the name of the function or object as it appears in the source code. TSFS
functions are always prefixed with tsfs_ followed by the function’s specific name.

Header

Following the name is the header file where the declaration of the documented API can be found. It is
recommended to use the displayed path relative to the root of the TSFS source directory when
including the TSFS headers.

For example, to include the file module header file tsfs_file.h the following include directive is
recommended.

#include <tsfs_file.h>

The root of the TSFS source directory should be added to the include path of the compiler.

Description

A description of the API element including basic usage information.

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

JBLopen
Embedded Software Insight Chapter 1 Overview 3

Prototype

For functions, the full signature of the API along with parameter names, types, and function return type.

Attributes

For functions only, this section lists the relevant function attributes. See Section 1.3 for a detailed
description of each attribute.

Parameters

Function parameters list along with a short description of each parameter.

Returned Errors or Return Value

For functions returning an error code, this section is named "Returned Errors” and lists the relevant
errors that can be returned. See Section 1.4.2 for more information on TSFS error handling.

For other functions that do not return an error code, this section lists the possible output values of the
function. In this case, the section is named "Returned Value”.

Example

Some API functions may include a small code example to illustrate usage. Note that these examples are
for documentation purposes and may not include error handling and checking to keep the examples
concise.

1.2.2 Data Types

Data types include structure definitions, enumerated types as well as scalar type definitions. They all
follow a similar documentation layout, below is an example of API reference for a hypothetical structure
definition named example_struct_t:

example_struct_t

<example/example.h>
Example structure description.
Members
member1l uint32_t First member’s description.

member2 uint32_t Second member’s description.

Data Type Name

At the top of each API is the name of the data type as it appears in the source code. In the case of
structures and enumerated types, this is always the typedef’'d data type. TSFS types always prefixed
with tsfs_ followed by the type's specific name. Types are also always suffixed with _t to differentiate
them from other definitions.

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

Macro

JBLopen
Embedded Software Insight Chapter 1 Overview 4

Header

Following the name is the header file where the declaration of the documented API can be found. It is
recommended to use the displayed path relative to the root of the source directory of TSFS when
including TSFS headers.

Description

A description of the data type including basic usage information.

Members/Enumeration Values

If documented, the API reference will list the structure members or the list of enumeration constants
along with a short description of each member. The list of members for opaque types with no publicly
accessible members are omitted from the list of members in the APl documentation.

1.2.3 Macros

Relevant and preprocessor macros that are part of the public APl are documented in the API reference.
This includes function-like macros as well as object-like macros. The latter is often referred to as
preprocessor definitions or simply defines. Below is an example of function-like macro named
TSFS_EXAMPLE_MACRO():

TSFS_EXAMPLE_MACRO()

<example/tsfs_example.h>

Example macro description.

Prototype TSFS_EXAMPLE_MACRO (argl,
arg2);
Parameters argl First argument’s description.

arg2 First argument’s description.

Expansion Macro expansion’s description.

Macro Name

At the top of each API is the name of the macro as it appears in the source code. TSFS preprocessor
definitions are always in capital letters and prefixed with TSFS_ followed by the macro’s specific name.

Header

Following the name is the header file where the declaration of the documented API can be found. It is
recommended to use the displayed path relative to the root of the source directory of TSFS when
including TSFS headers.

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 1 Overview 5

Description

A description of the macro including basic usage information.

Parameters

Macro parameters list along with a short description of each parameter.

Expansion

For function-like macros an expansion section describes the macro’s expansion including the type if
applicable.

1.3 Function Attributes

The API reference documentation for API functions includes a set of attributes that clarifies in which
context it is safe to call a specific API function. The attributes are as follows:

Blocking
ISR-safe
Critical-safe
Thread-safe

1.3.1 Blocking

The function is potentially blocking, which means it can wait or pend on a kernel object such as a
semaphore or mutex, in order to wait for a resource to be available or for an operation to complete.
Some functions may be optionally blocking depending on the function’s arguments. Those functions are
always marked as blocking in the API reference regardless.

In a bare-metal environment, any function marked as blocking can potentially suspend the background
task while waiting for a specific interrupt. Many of those functions take a timeout parameter that can
be set to O to make them non-blocking (polling) if suspension of the background task is undesired.

As a general rule, blocking functions should not be called from an interrupt service routine, also known
as interrupt handler or while the CPU interrupts are disabled. In addition, some RTOSes allow
suspending or locking the scheduler, when this is the case, blocking functions should not be called while
the scheduler is suspended or locked.

1.3.2 ISR-Safe

An ISR-safe function can be called from within an interrupt service routine. This also includes callback
functions that are called from an interrupt context. Note that while an ISR-safe function is usually
critical-safe this is not always the case. Also an ISR-safe function may not necessarily be thread-safe.

1.3.3 Critical Safe

Critical safe functions can be called when the CPU interrupts are disabled, this is also called a critical
context or sometimes a critical section. Critical sections are usually entered by calling a spinlock acquire
or critical section enter function. Calling a non-critical-safe function from within a critical section can
corrupt the state of the CPU'’s interrupt disable flags and cause runtime faults or data corruption.

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 1 Overview 6

1.3.4 Thread-Safe

A thread safe function guarantees correct operations between multiple threads or tasks when running
under a multitasking kernel. In the context of the TSFS API, thread-safe also implies thread safety on an
SMP system, which means it is safe to use the API function from different threads in parallel. Due to the
design of TSFS, thread-safe functions are also re-entrant, provided that the other function attributes,
such as ISR safety, are respected.

1.3.5 Function Attributes in Header Files

Function attributes are documented slightly differently in the source header files in order to be more
concise and easier to maintain. The attributes are documented under an "Attributes” section and are
named as follows:

e non-blocking

¢ non-thread-safe
ISR-safe

e critical-section-safe

Absence of an attribute implies that the opposite attribute applies to the function. For example, in the
absence of any explicit function attribute in the header documentation, a function is assumed to be
blocking, thread-safe and not safe to call from ISRs and critical sections.

1.4 API Conventions

TSFS API adheres to a few conventions with respect to the naming, error handling and timeouts that are
useful for the application developers.

1.4.1 Naming

The TSFS API function names are all written in lower case, except preprocessor macros which are in
upper case. Words within an object name are separated by underscores and the whole name is prefixed
with tsfs_ followed by the function specific part of the name.

For example, the core module function to create a snapshot is as follows:
tsfs_sshot_create()
And the maximum path length is named as follows:

TSFS_MAX_PATH_LEN

1.4.2 Error Handling

Most API functions return a status in the form of a plain int as the function’s return value. As a general
exception, some functions that cannot fail are allowed to return nothing (void) or another value.

In general, TSFS attempts to minimize the number of different error codes to simplify the application’s
error handling and improve performance. The list of possible error codes is included within every

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 1 Overview 7

function’s documentation. The meaning of each error code is also documented in a function’s
description. A list of all defined error codes is given in here.

As with other preprocessor macros and enumeration constants, the application should never rely on the
exact numerical value of any specific error code. However, two guarantees are made with respect to the
error code numerical values. The first is that RTNC_SUCCESS will always expand to 0. The second is that
all other error codes are negative. Positive values are not used for any valid error code. Any undefined
or unexpected error code returned by a function should be treated as a fatal error.

Two error codes have the exact same meaning for all the functions, namely RTNC_SUCCESS and
RTNC_FATAL.

RTNC_SUCCESS is returned when a function completed successfully without issue.

RTNC_FATAL is returned if and only if an unexpected situation that should not happen at runtime is
detected. This includes invalid function arguments, internal data corruption and assertion failures within
the code. In addition, any unexpected error code returned from a function should be treated as a fatal
error. It is up to the application to decide on the proper action to perform upon receiving a fatal error. As
a general rule, the application should not perform any other calls to that module instance. Safety critical
applications should consider an RTNC_FATAL error code as a severe assertion failure and act accordingly.

Some modules, especially 10 modules such as UART and 12C, provides a reset API call that can be used
to reset the internal state of a module as well as the underlying peripheral. This can be used to attempt
to recover from a fatal error in case the error condition is temporary.

1.4.3 Numerical Values of Macros and Enumeration Constants

To ease maintainability and ensure compatibility with future versions, the application should never rely
on enumeration constants and macros numerical value.

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

APl Reference

tsfs_commit()

<tsfs.h>

Commits all the updates performed on the given file system instance since the last commit, including file

updates, snapshot creations and deletions.

In the event of an unexpected interruption (e.g. power loss) the file system is returned to the state it

was in after the last successful call to tsfs_commit().

Prototype int tsfs_commit (constcharx p_fs_name);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters p_fs_name Name of the file system instance to be committed.
Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL
tsfs_create()
<tsfs.h>

Creates a new file system instance.

TREEspan File System API Reference Manual

www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 2 API Reference | 9

Prototype int tsfs_create (constchar p_fs_name,
const tsfs_cfg_t* p_cfg);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
vl ox X | v
Parameters p_fs_name Name of the created file system instance.
p_cfg TSFS configuration structure.
Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_destroy()
<tsfs.h>

Frees all the memory tied to the given file system instance.

Prototype int tsfs_destroy (constcharx p_fs_name);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] P | v

Parameters p_fs_name Name of the created file system instance.
Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND

RTNC_IO_ERR

RTNC_FATAL

tsfs_dir_close()
<tsfs_dir.h>

Closes the given directory. The handle becomes invalid after the directory is closed. Using a directory
handle after closing it yields undefined behavior.

Prototype int tsfs_dir_close (tsfs_dir_hndl_t hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 2 API Reference | 10
Parameters hndl Handle to the directory to be closed.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

tsfs_dir_create()

<tsfs_dir.h>

Creates a directory at the given path.

The given path must lead to a location within the working state.

If a file or directory already exists at this location, RTNC_ALREADY_EXIST is returned and the original file
or directory is left untouched.

If the parent directory does not exist, RTNC_NOT_FOUND is returned. If the path is outside the working
state, RTNC_INVALID_OP is returned.

Prototype int tsfs_dir_create (constchar*x p_path);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] X | v

Parameters p_path Path of the directory to be created.

Returned RTNC_SUCCESS

Errors RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_ALREADY_EXIST
RTNC_IO_ERR
RTNC_FATAL

tsfs_dir_delete()
<tsfs_dir.h>
Deletes the directory located at the given path.

The path must lead to an existing directory of the working state. If the directory does not exist,
RTNC_NOT_FOUND is returned. If the directory is not in the working state or the given path leads to a file,
RTNC_INVALID_OP is returned. Also, if the directory is not empty, RTNC_INVALID_OP is returned.

An opened directory may safely be deleted. In this case, any further read access to this directory will
return RTNC_NOT_FOUND.

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 2 API Reference | 11
Prototype int tsfs_dir_delete (constchar*x p_path);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v

Parameters p_path Path of the directory to be deleted.

Returned RTNC_SUCCESS

Errors RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_dir_exists()

<tsfs_dir.h>

Verifies whether the directory located at the given path exists. The function returns true (through the
p_exist parameter) if the directory exists and false otherwise (including when the given path leads
to a file).

Prototype int tsfs_dir_exists (constchar * p_path,
bool * p_exist);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters p_path Path to the directory which existence is to be tested.

p_exist Whether the directory located at the given path exists.

Returned RTNC_SUCCESS
Errors RTNC_IO_ERR
RTNC_FATAL
[
tsfs_dir_open()
<tsfs_dir.h>

Opens the directory located at the given path. If the directory does not exist, RTNC_NOT_FOUND is
returned. If the given path leads to a file, RTNC_INVALID_OP is returned.

Prototype int tsfs_dir_open (constchar * p_path,
tsfs_dir_hndl_t* p_hndl);

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 2 API Reference | 12

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox X | v

Parameters p_path Path to the directory to be opened.
p_hndl Handle to the opened directory instance.

Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL
tsfs_dir_read()
<tsfs_dir.h>

Reads the content of the given directory, one directory entry at a time. The name of the current
directory entry is copied in the given name buffer. Calling tsfs_dir_read() after the last directory
entry has been reached will return an empty string.

Prototype int tsfs_dir_read (tsfs_dir_hndl_t hndl,
char * p_name,
size_t name_sz);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox] X | v
Parameters hndl Handle to the directory to read from.
p_name Buffer to receive the current entry name.

name_sz Size of the given name buffer in bytes.

Returned RTNC_SUCCESS
Errors RTNC_IO_ERR
RTNC_OVERFLOW
RTNC_FATAL
tsfs_drop()
<tsfs.h>

Reverts the file system’s state to that of the latest commit. All modifications performed since the latest
commit are discarded, including file updates, snapshot creations and deletions.

Prototype int tsfs_drop (constchar *x p_fs_name);

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 2
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox X | v

Parameters p_fs_name Name of the file system instance.
Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND

RTNC_IO_ERR

RTNC_FATAL

tsfs_file_append()
<tsfs_file.h>

Writes the supplied buffer at the end of the given file.

API Reference 13

The number of bytes written is returned through p_append_sz. The returned value may be smaller
than append_sz if, and only if, the file system is full. In this case RTNC_FULL is returned and the value
pointed to by p_append_sz indicates the number of bytes written before the file system becomes full.

If an error occurs, other than RTNC_FULL, the value pointed to by p_append_sz is unspecified.
Otherwise, if the function completes successfully, the requested number of bytes is guaranteed to have
been written. In this case, the value pointed to by p_append_sz is always equal to append_sz.

Prototype int tsfs_file_append (tsfs_file_hndl_t hnd1l,
const void * p_buf,

tsfs_file_size_t append_sz,
tsfs_file_size_tx p_append_sz);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox] X | v
Parameters hndl Handle to the file to append data.
p_buf Buffer to be written.
append_sz Size of the buffer to be written in bytes.

p_append_sz Size of the written data in bytes.

Returned RTNC_SUCCESS

Errors RTNC_FULL
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_close()

<tsfs_file.h>

TREEspan File System API Reference Manual

www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 2 API Reference | 14

Closes the given file. The handle becomes invalid after the file is closed. Using a file handle after closing
it yields undefined behaviour.

Prototype int tsfs_file_close (tsfs_file_hndl_t hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
vl ox P | v

Parameters hndl Handle to the file to be closed.

Returned RTNC_SUCCESS

Errors RTNC_FATAL

tsfs_file_create()

<tsfs_file.h>

Creates a file at the given path.
The given path must lead to a location within the working state.

If a file or directory already exists at the same location, RTNC_ALREADY_EXIST is returned and the
original file or directory is left untouched.

If the parent directory does not exist, RTNC_NOT_FOUND is returned. If the path is outside the working
state, RTNC_INVALID_OP is returned.

Prototype int tsfs_file_create (constchar* p_path);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox] X | v

Parameters p_path Path of the file to be created.

Returned RTNC_SUCCESS

Errors RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_ALREADY_EXIST
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_delete()

<tsfs_file.h>

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 2 API Reference | 15

Deletes the file located at the given path.

The path must lead to an existing file of the working state. If the file does not exist, RTNC_NOT_FOUND is
returned. If the file is not in the working state or the given path leads to a directory, RTNC_INVALID_OP
is returned.

A opened file may safely be deleted. In this case, any further read/write access to this file will return
RTNC_NOT_FOUND.

Prototype int tsfs_file_delete (constchar* p_path);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
vooox] X | v

Parameters p_path Path to the file to be deleted.

Returned RTNC_SUCCESS

Errors RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_exists()
<tsfs_file.h>

Verifies whether the file located at the given path exists. The function returns true (through the
p_exist parameter) if the file exists and false otherwise (including when the given path leads to a
directory).

Prototype int tsfs_file_exists (constchar x p_path,
bool * p_ex‘ist) 5
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] X | v
Parameters p_path Path of the file which existence is to be tested.

p_exist Whether the file located at the given path exists.

Returned RTNC_SUCCESS
Errors RTNC_IO_ERR
RTNC_FATAL

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 2 API Reference | 16

tsfs_file_extent_min_sz_set()

<tsfs_file.h>
Sets the minimum extent size for the given file. The file must be empty, otherwise RTNC_INVALID_OP is
returned.
Prototype void tsfs_file_extent_min_sz_set (constchar * p_path,
uint8_t min_sz_log2);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

oo ox] X | v
Parameters p_path File path.

min_sz_log?2 Minimum extent size (base-2 logarithm).

il tsfs_file_mode_reset()
<tsfs_file.h>

Resets an opened file access mode.

Prototype void tsfs_file_mode_reset (tsfs_file_hndl_t hndl,
int mode) ;
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
vooox] X | v
Parameters hndl Handle to the file which mode is to be altered.
mode Access mode to be reset (only TSFS_FILE_MODE_RD_ONLY is currently sup-
ported).

tsfs_file_mode_set()
<tsfs_file.h>

Sets an opened file access mode.

Prototype void tsfs_file_mode_set (tsfs_file_hndl_t hndl,
int mode) ;
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox] P | v

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 2 APl Reference | 17
Parameters hndl Handle to the file which mode is to be altered.
mode Access mode to be set (only TSFS_FILE_MODE_RD_ONLY is currently sup-
ported).

tsfs_file_open()
<tsfs_file.h>

Opens the file located at the given path. If the file does not exist RTNC_NOT_FOUND is returned. If the
given path leads to a directory, RTNC_INVALID_OP is returned.

Prototype int tsfs_file_open (constchar * p_path,
tsfs_file_hndl_t x p_hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox] X | v

Parameters p_path Path of the file to be opened.
p_hndl Opened file handle.

Returned RTNC_SUCCESS

Errors RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_read()
<tsfs_file.h>

Reads the requested amount of bytes from the given file.

The number of bytes read is returned through p_rd_sz. The returned value may be smaller than rd_sz
if the end of the file is reached. If an error occurs, the value pointed to by p_rd_sz is unspecified.

Prototype int tsfs_file_read (tsfs_file_hndl_t hnd1l,
void * p_buf,
tsfs_file_size_t rd_sz,
tsfs_file_size_tx p_rd_sz);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 2 APl Reference | 18
Parameters hndl Handle to the file to read from.
p_buf Buffer to read into.
rd_sz Number of bytes to be read from the file.

p_rd_sz Actual number of bytes read from the file.

Returned RTNC_SUCCESS
Errors RTNC_IO_ERR
RTNC_FATAL
tsfs_file_seek()
<tsfs_file.h>

Sets the current read/write position of the given file to the specified position.

Prototype int tsfs_file_seek (tsfs_file_hndl_t hndl,
tsfs_file_pos_offset_t offset,
int whence) ;

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox x | v
Parameters hndl Handle to the file to seek into.
offset New position relative to the supplied reference position (the whence pa-
rameter).

whence Reference position to which offset is to be added.

Returned RTNC_SUCCESS

Errors RTNC_FATAL
tsfs_file_size_get()

<tsfs_file.h>

Gets the size of the file located at the given path.

If the file does not exist, RTNC_NOT_FOUND is returned. If the given path leads to a directory,
RTNC_INVALID_OP is returned.

Prototype int tsfs_file_size_get (constchar * p_path,
tsfs_file_size_tx p_sz);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox X | v

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 2 API Reference | 19

Parameters p_path Path of the file to get the size of.
p_sz Size of the file in bytes.

Returned RTNC_SUCCESS

Errors RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_truncate()
<tsfs_file.h>
Shrinks or extends the file located at the given path.

The path must lead to an existing file of the working state. If the file does not exist, RTNC_NOT_FOUND is
returned. If the file is not in the working state or the given path leads to a directory, RTNC_INVALID_OP
is returned.

A file may safely be truncated while it is opened.

Prototype int tsfs_file_truncate (constchar * p_path,
tsfs_file_size_t new_sz);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v

Parameters p_path Path to the file to be truncated.
new_sz Size of the file after truncation in bytes.

Returned RTNC_SUCCESS

Errors RTNC_NOT_FOUND
RTNC_INVALID_OP
RTNC_IO_ERR
RTNC_FATAL

tsfs_file_write()
<tsfs_file.h>

Writes the supplied buffer to the given file.

The number of bytes written is returned through p_wr_sz. The returned value may be smaller than
wr_sz if, and only if, the file system is full. In this case RTNC_FULL is returned and the value pointed to
by p_wr_sz indicates the number of bytes written before the file system becomes full.

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight

Prototype

Attributes

Parameters

Returned
Errors

int tsfs_file_write (tsfs_file_hndl_t
const void *
tsfs_file_size_t
tsfs_file_size_t %

Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

Chapter 2 APl Reference | 20

hnd1,
p_buf,

wr_sz,
p_wr_sz);

oo ox] X | v
hndl File handle.
p_buf Buffer to be written.
Wr_sz Size of the buffer to be written in bytes.

p_wr_sz Size of the written data in bytes.

RTNC_SUCCESS
RTNC_FULL
RTNC_IO_ERR
RTNC_FATAL

tsfs_format()

<tsfs.h>

Formats the given file system instance.

Prototype

Attributes

Parameters

Returned
Errors

int tsfs_format (const char
const void *

p_fs_name,

p_params);

Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox P

v

p_fs_name Name of the file system instance to be formatted.
p_params Optional format parameters (set to NULL for default).

RTNC_SUCCESS
RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_media_get()

<tsfs.h>

Gets the media used by the given file system instance.

TREEspan File System API Reference Manual

www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 2 API Reference | 21

Prototype int tsfs_media_get (constchar * p_fs_name,
bp_media_hndl_t * p_media_hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
vl ox X | v
Parameters p_fs_name Name of the file system instance.

p_media_hndl Retrieved media handle.

Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND

RTNC_FATAL
tsfs_mount()
<tsfs.h>

Mounts the file system residing on the given media. If the media has not been previously formatted
using tsfs_format () or the on-disk format is invalid, RTNC_INVALID_FMT is returned.

Prototype int tsfs_mount (constchar *x p_fs_name);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox] x | v

Parameters p_fs_name Name of the file system instance to be mounted.
Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND

RTNC_INVALID_FMT

RTNC_IO_ERR

RTNC_FATAL
tsfs_revert()
<tsfs.h>

Returns the file system to the state it was in at the time of the given snapshot. If the given snapshot
does not exist, RTNC_NOT_FOUND is returned.

Snapshots created after the revert snapshot are deleted. The revert operation is ended by an implicit
commit.

Prototype int tsfs_revert (constcharx p_path);

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 2 API Reference | 22
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox X | v
Parameters p_path Path to the snapshot to revert to.
Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL
tsfs_sshot_create()
<tsfs.h>

Takes a snapshot of the current file system state. If the snapshot already exists, RTNC_ALREADY_EXIST is

returned.
Prototype int tsfs_sshot_create (constchar x p_fs_name,
const char * p_sshot_name);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters p_fs_name Name of the file system instance.
p_sshot_name Name of the newly created snapshot.
Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND
RTNC_ALREADY_EXIST
RTNC_IO_ERR
RTNC_FATAL
tsfs_sshot_delete()
<tsfs.h>

Discards the given snapshot.

Prototype int tsfs_sshot_delete (constchar x p_fs_name,
const char *x p_sshot_name);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 2 API Reference | 23

Parameters p_fs_name Name of the file system instance.
p_sshot_name Name of the snapshot to be deleted.

Returned RTNC_SUCCESS

Errors RTNC_NOT_FOUND
RTNC_IO_ERR
RTNC_FATAL

tsfs_sshot_exists()
<tsfs.h>

Verifies whether the snapshot located at the given path exists. The function returns true (through the
p_exist parameter) if the file exists and false otherwise.

Prototype int tsfs_sshot_exists (constchar x p_path,
bool * p_ex‘ist) 5
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] X | v
Parameters p_path Path of the snapshot which existence is to be tested.

p_exist Whether the snapshot located at the given path exists.

Returned RTNC_SUCCESS
Errors RTNC_IO_ERR
RTNC_FATAL

tsfs_trace_data_get()
<tsfs.h>

Gets the trace data used by the given file system instance.

Prototype int tsfs_trace_data_get (constcharx p_fs_name,
void x* pp_tdata);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] P | v
Parameters p_fs_name Name of the file system instance.
pp_tdata Retrieved trace data.

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

Data Type

JBLopen

Embedded Software Insight Chapter 2 API Reference | 24
Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND
RTNC_FATAL

tsfs_unmount()
<tsfs.h>

Unmounts the given file system instance.

Prototype int tsfs_unmount (constchar x p_fs_name);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v

Parameters p_fs_name Name of the file system instance to be unmounted.
Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND

RTNC_IO_ERR

RTNC_FATAL

tsfs_file_pos_offset_t
<tsfs_file.h>

TSFS file position offset. This type is used to represent file position offsets. It may contain positive or
negative position offsets.

tsfs_file_size_t

<tsfs_file.h>

TSFS file size. This type is used to represent file sizes and positions.

tsfs_cfg_t

<tsfs.h>

File system configuration structure.
Members

media_hndl bp_media_hndl_t Media handle to be bound to the created file system
instance.

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

Macro

Macro

Macro

JBLopen

Embedded Software Insight Chapter 2 API Reference 25

max_entry_cnt size_t Maximum number of simultaneously opened files or
directories.

p_seg void * Memory segment for allocating internal file system
structures.

seg_sz size_t Size of the memory segment provided to the file sys-
tem.

p_tdata void * Trace data.

p_ext_cfg const void * Optional extended configuration. Set to NULL for de-
fault.

tsfs_dir_hndl_t
<tsfs_dir.h>

TSFS directory handle. A directory handle is obtained through tsfs_dir_open().

tsfs_file_hndl_t
<tsfs_file.h>

TSFS file handle. A file handle is obtained through tsfs_file_open(). The file handle is internally
tied to a file descriptor that contains the current read/write position.

Many file handles can be obtained for the same file, each handle being tied to a different file descriptor
and thus a different and independent file position.

TSFS_FILE_MODE_RD_ONLY
<tsfs_file.h>

File access mode flags. Access mode flags only affect opened file instances. They do not alter on-disk
file attributes.Allows for write protection on a per-file basis.

TSFS_MAX_INSTANCE_NAME_LEN
<tsfs.h>

Maximum number of characters in an instance name excluding the terminating null character.

TSFS_MAX_PATH_LEN
<tsfs.h>

Maximum number of characters in a file path excluding the terminating null character.

TREEspan File System APl Reference Manual www.jblopen.com

https://www.jblopen.com

Macro

Macro

JBLopen
Embedded Software Insight

RTNC_*

<util/rtnc.h>

Return codes.

RTNC_SUCCESS
RTNC_FATAL
RTNC_NO_RESOURCE
RTNC_IO_ERR
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_NOT_FOUND
RTNC_ALREADY_EXIST
RTNC_ABORT
RTNC_INVALID_OP
RTNC_WANT_READ
RTNC_WANT_WRITE
RTNC_INVALID_FMT
RTNC_INVALID_PATH
RTNC_CORRUPT

<tsfs_file.h>

TSFS_FILE_SEEK_SET
TSFS_FILE_SEEK_CUR
TSFS_FILE_SEEK_END

Function completed successfully.

Fatal error occurred.

Resource allocation failure.

Transfer or peripheral operation failed.

Function timed out.

Requested object not found.
Object already created or allocated.

Operation aborted by software.

Invalid operation.

Read operation requested.

Write operation requested.

Invalid format.
Invalid path.

Data corrupted.

RTNC_FULL Container full.
RTNC_OVERFLOW Overflow
TSFS_FILE_SEEK_x

File seek flags. Indicate where the file offset should be applied from.

Seek from the beginning.

Seek from the current position.

Seek from the end of the file.

TREEspan File System API Reference Manual

Chapter 2 API Reference

API, feature or configuration is not supported.

26

www.jblopen.com

https://www.jblopen.com

Chapter

Document Revision History

The revision history of the TSFS user manual and reference manuals can be found within the TSFS
source package.

TREEspan File System API Reference Manual www.jblopen.com

https://www.jblopen.com

	Overview
	About TREEspan File System
	Elements of the API reference
	Functions
	Data Types
	Macros

	Function Attributes
	Blocking
	ISR-Safe
	Critical Safe
	Thread-Safe
	Function Attributes in Header Files

	API Conventions
	Naming
	Error Handling
	Numerical Values of Macros and Enumeration Constants

	API Reference
	tsfs_commit
	tsfs_create
	tsfs_destroy
	tsfs_dir_close
	tsfs_dir_create
	tsfs_dir_delete
	tsfs_dir_exists
	tsfs_dir_open
	tsfs_dir_read
	tsfs_drop
	tsfs_file_append
	tsfs_file_close
	tsfs_file_create
	tsfs_file_delete
	tsfs_file_exists
	tsfs_file_extent_min_sz_set
	tsfs_file_mode_reset
	tsfs_file_mode_set
	tsfs_file_open
	tsfs_file_read
	tsfs_file_seek
	tsfs_file_size_get
	tsfs_file_truncate
	tsfs_file_write
	tsfs_format
	tsfs_media_get
	tsfs_mount
	tsfs_revert
	tsfs_sshot_create
	tsfs_sshot_delete
	tsfs_sshot_exists
	tsfs_trace_data_get
	tsfs_unmount
	tsfs_file_pos_offset_t
	tsfs_file_size_t
	tsfs_cfg_t
	tsfs_dir_hndl_t
	tsfs_file_hndl_t
	TSFS_FILE_MODE_RD_ONLY
	TSFS_MAX_INSTANCE_NAME_LEN
	TSFS_MAX_PATH_LEN
	RTNC_*
	TSFS_FILE_SEEK_*

	Document Revision History

