JBLopen
Embedded Software Insight

BASEplatform API Reference Manual

RM0001
July 9, 2019

Copyright

© 2017-2019 JBLopen Inc.

All rights reserved. No part of this document and any associated software may be reproduced,
distributed or transmitted in any form or by any means without the prior written consent of JBLopen Inc.

Disclaimer

While JBLopen Inc. has made every attempt to ensure the accuracy of the information contained in this
publication, JBLopen Inc. cannot warrant the accuracy of completeness of such information. JBLopen
Inc. may change, add or remove any content in this publication at any time without notice.

All the information contained in this publication as well as any associated material, including software,
scripts, and examples are provided “as is”. JBLopen Inc. makes no express or implied warranty of any
kind, including warranty of merchantability, noninfringement of intellectual property, or fitness for a
particular purpose. In no event shall JBLopen Inc. be held liable for any damage resulting from the use
or inability to use the information contained therein or any other associated material.

Trademark
JBLopen, the JBLopen logo, and BASEplatformm are trademarks of JBLopen Inc. All other trademarks
are trademarks or registered trademarks of their respective owners.

Contents

1 Overview
About the BASEplatform e e e
Elements of the APl Reference i i i e
Functions e e e e e
Data Types . . . o o e e e e e e e e e e
MaCroS . . . e e e e e e e e e e e e e e
Function Attributes L e e e e e e
Blocking e e e e
ISR-Safe e e e e e

Function Attributes in Header Files e
APl Conventions e e e e
Naming o e e e e e e e e e e
Error Handling o o o e
TIMeEoULS . . . e e e e e e e e e e e e
Numerical Values of Macros and Enumeration Constants
Driver APl . . .
Advanced Driver APl e e e e e e e
Accessing the Drivers Directly e

2 Architecture
bp_irg_flag_t e e e
BP_ARCH_ALIGN_MAX . . . e e e e
BP_ARCH_COMPILER e e e e 10
BP_ARCH_CORE_ID_GET oo e e e e e e e e s s s e 10
BP_ARCH_CPU e 10
BP_ARCH_DEBUG_BREAK e e e e s e e 10
BP_ARCH _ENDIAN 10
BP_ARCH_INT_DIS e e e e e 10
BP_ARCH_INT_EN . . . e e 11
BP_ARCH_IS_CRIT e e e e e e e 11
BP_ARCH IS INT . . . e e 11

O 0 O OO NNINNOTOOOO U DOWODNNR PR

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight

3

4

5

BP_ARCH_IS_INT_ ORCRIT
BPARCHMB.
BP_ARCH_PANIC o o
BPARCHRMB
BP_ARCH.SEV o
BPARCHWFE
BP_ARCH_ WFI
BP.ARCHWMB

Cache Management

bp_cache_dcache_inv_all)
bp_cache_dcache_max_line_get()
bp_cache_dcache_min_line_get()
bp_cache_dcache_range clean()

bp_cache_dcache_range_cleaninv()

bp_cache_dcache_range_inv()
bp_cache_icache_inv_all)

Spinlocks

bp_critical_section_enter()
bp_critical_section_exit()
bp_slock_acquire().
bp_slock_acquire_irg_dis(),
bp_slock_acquire_irg_save()
bp_slock_release()
bp_slock_release_irg_en()
bp_slock _release irg restore()
bp_slock t e

Time

bp_time_freg_get()
bp_time_get()
bp_time_get32()
bp_time_get.ms()
bp_time_get ms32().
bp_time_get_ns()
bp_time_get_ ns32()
bp_time_halt()
bp_time_init()
bp_time_ms_to_raw()
bp_time_ms_to_raw32()
bp_ time ns toraw()
bp_time_ns_toraw32()
bp_time_raw toms()
bp_time_raw_to_ms32()
bp_time_raw_tons()
bp_time raw to ns32()
bp_time_resume()
bp_time_sleep()
bp_time_sleep32()
bp_time_sleep_busy()

BASEplatform API Reference Manual

Contents i

www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight

6

BASEplatform API Reference Manual

bp_time_sleep_busy32()
bp_time_sleep_busy_ms()
bp_time_sleep_busy_ns()

bp_time_sleep_ms()
bp_time_sleep_ns()

bp_time_sleep_yield()
bp_time_sleep_yield32()

bp_time_sleep_yield_ms()
bp_time_sleep_yield_ns()

Timers

bp_timer_create()

bp_timer_destroy()

bp_timer_halt().
bp_timer_init()
bp_timer_restart()
bp_timer_restart_ms()
bp_timer_restart_ns()

bp_timer_resume()

bp_timer_start()

bp_timer_start_ms()
bp_timer_start_ns()

bp_timer_stop()
bp_timer_target_get()
bp_timer_action_t
bp_timer_cb t
bp_timer_hndl_t

Platform Clocks

bp_clock dis()
bp_clock.en(),

bp_clock_freq_get()

bp_clock_gate_id_is_valid()
bp_clock_id_is_valid()
bp_clockis_en()

Platform Resets

bp_periph_reset_assert()
bp_periph_reset_deassert()
bp_periph_reset_id_is_valid()
bp_periph_reset_is_asserted()

Interrupt Management

bp_intarg.get()
bpint.dis()
bp_inten()

bp_int_id_is_valid()

bp_int_init().
bp_int_prio_get().
bp_int_prio_highest_get()
bp_int_prio_lowest_get()
bp_int_prio_next_get()

Contents iii

www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Contents iv
bp_int_prio_prev_get() e e e 60
bp_int_prio_set() e 61
bp_int_reg(). o o e e e e e 61
bp_int_src_dis() e e 62
bp_int_src_en() o e e e 62
bp_int_src_is_en() o e e 63
BRIt trig() . o e e 63
bp_int_type_get() e 64
bp_int_type_set() o e e e 64
bp_int_type t e e e e e 65
bp_int_handler_t. e 65
BP_INT_ID_NONE e e e e e e 66

10 Interrupt SMP Extension 67
bp_int_smp_src_dis() e e e 67
bp_int_smp_src_en(). e e 68
bp_int_smp_trig) 68

11 GPIO 69
bp_gpio_create() e 69
bp_gpio_data_get() e 70
bp_gpio_data_set() e e 71
bp_gpio_data_tog() e e 71
bp_gpio_destroy() e e 72
bp_gpio_dir_get() e 72
bp_gpio_dir_set() e 73
bp_gpio_dis() e e 74
bp_gpio_drv_hndl_get() e 74
bp_gpio_en() e e 75
bp_gpio_hndl_get() e 75
bp_gpio_is_en() e 76
bp_gpio_reset() e e 76
bp_gpio_dir_t e e e e 77
bp_gpio_board_def_t 77
bp_gpio_drv_hndl_t e 78
bp_gpio_hndl_t e 78
bp_gpio_soc_def t e e e 78
BP_GPIO_HNDL_IS_NULL o e e e e e e e e e e e e 79
BP_GPIO_NULL_HNDL e e e e e e e e e 79

12 12C 80
bp_i2c_acquire() e e 80
bp_i2c_addr_is_10b() e e 81
bp_i2c_addr_is_valid() e 81
bp_i2c_cfg get() e 82
bp_i2c_cfg set() e 82
bp_i2c_create() e 84
bp_i2c_destroy() e e 85
bp_i2c_dis(). . . . v o e e 85
bp_i2c_drv_hndl_get(). e 86
bp_i2c_en() o e e 87

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight

bp_i2c_flush()
bp_i2c_hndl_get()
bp_i2c_idle_wait()
bpi2cisen()
bp_i2c_release()
bp_i2c_reset()
bp_i2cxfer()
bp_i2c_xfer_async()
bp_i2c_xfer_async_abort(),
bp_i2c_action_t
bp_i2c dirt
bp_i2c_async_cb_t
bp_i2c_ board def t
bp_i2c cfg t
bp_i2c_drv_hndl_t.
bp_i2c_hndl_t
bp_i2c_soc def t
bp_i2c tf t

BP_12C_10B_SLV_ADDR_MASK

BP_I2C_HNDL_IS_NULL
BP_I2C_MAX_10B_SLV_.ADDR
BP_I2C_MAX_SLV_ADDR
BP_I2C_MIN_10B_SLV_ADDR
BP_I2C_NULL_HNDL.
BP_I2C_SLV_ADDR_MASK

13 SPI

bp_spi_cfg.get()
bp_spi_cfgset)
bp_spicreate().
bp_spi_destroy()
bp_spidis().
bp_spi_drv_hndl_get().
bpspien()
bp_spi flush()
bp_spi_hndl_get()
bp_spi_idle_wait()
bp_spi_is.en()
bp_spi_reset()
bp_spi_slave_desel().
bp_spislavesel()
bp_spixfer()
bp_spi_xferasync()
bp_spi_xfer_async_abort()
bp_spi_action_t
bp_spi_async.cb t.
bp_spi_board def t
bp_spi_cfg t
bp_spi_drv_hndl_t........................
bpspihndl t
bp_spisocdef t

BASEplatform APl Reference Manual

Contents %

www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Contents vi
o] oY o 115
BP_SPI_HNDL_IS_NULL e e e e e e e e s e e 116
BP_SPI_NULL_HNDL e e e e e e e e e e 116
BP_SPI_SS _NONE e 116

14 UART 117
bp_uart_acquire() e 117
bp_uart_cfg_get() e e 118
bp_uart_cfg_set() e e 118
bp_uart_create() e 120
bp_uart_destroy() e 121
bp_uart_dis() e e 122
bp_uart_drv_hndl_get() e e 122
bp_uart_en() e e 123
bp_uart_hndl_get() e e e 123
bp_uart_is_en(). e e 124
bp_uart_release() e 124
bp_uart_reset() e e e 125
bp_uart_ rx() e 125
bp_uart_rx_async() e e 126
bp_uart_rx_async_abort() e e 127
bp_uart_rx_flush() e 128
bp_uart_rx_idle_wait() e 128
bp_uart_txX() e e 129
bp_uart_tx_asyncl) e e 129
bp_uart_tx_async_abort() e e 130
bp_uart_tx_flush() e 131
bp_uart_tx_idle_wait() e 131
bp_uart_action_t. e e e 132
bp_uart_parity_t e e e e e 132
bp_uart_stop_bits_t e 133
bp_uart_async_cb_t e e 133
bp_uart_board_def_t e 134
bp_uart_cfg t e e 134
bp_uart_drv_hndl_t e e 135
bp_uart_hndl_t. e e e 135
bp_uart_soc_def t. e 135
bp_uart_tf t . . . e e e 136
BP_UART_HNDL_IS_NULL e e e e e s e e e e s e, 136
BP_UART_NULL_HNDL e e e e e e e e e e s e e e e 136
BP_UART_PARITY_IS_ VALID e e e e e e e 137
BP_UART_STOP_BITS_IS_VALID e e e e e e e e 137

15 Error Codes 138
RTNC * . e 138

16 Architecture Definitions 139
BP_ARCH_CPU_ARM V5 . . e e e e e 139
BP_ARCH_CPU_ARM_V6 e e e e e s e 139
BP_ARCH_CPU_ARM_VO6M e e e e s e e 139
BP_ARCH_CPU_ARM_V7AR e e e e e 139

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Contents vii
BP_ARCH_CPU_ARM _V7M . . e e e e e 140
BP_ARCH_CPU_ARM _VBA e e e 140
BP_ARCH_CPU_ARM_V8M e e e s e 140
BP_ARCH_CPU_ARM_V8R e e e e e e e s e 140
BP_ARCH_CPU_LINUX . . . e e e e e e e e e e e e 140
BP_ARCH_CPU_MICROBLAZE e e e e e e e e e 140
BP_ARCH_CPU_NONE e e 141
BP_ARCH_CPU_SPARCV8 o e e e e e e s s s e 141
BP_ARCH_CPU_SPARCV Y e e e e e e e e e e e 141

17 GPIO Driver 142
bp_gpio_drv_create_t e e 142
bp_gpio_drv_data_get t 143
bp_gpio_drv_data_set_t e 143
bp_gpio_drv_data_tog t e 144
bp_gpio_drv_destroy_t e e e 144
bp_gpio_drv_dir_get t e e 145
bp_gpio_drv_dir_set_t e 145
bp_gpio_drv_dis_t e e 146
bp_gpio_drv_en_t e e e e 146
bp_gpio_drv_is_en_t e e 147
bp_gpio_drv_reset_t e e 147
BP_GPIO_DRV_HNDL_IS_ NULL e e e e 148
BP_GPIO_DRV_NULL_HNDL e e e e e s e e e 148

18 12C Driver 149
bp_i2c_drv_cfg get t 149
bp_i2c_drv_cfg set_t e 150
bp_i2c_drv_create_t. e e e e e e 150
bp_i2c_drv_destroy_t e 151
bp_i2c_drv_dis_t. e e 151
bp_i2c drv_en_t e e 152
bp_i2c_drv_flush_t e e e 152
bp_i2c_drv_idle_wait_t e e e 153
bp_i2c_drv_is_en_t e e e 153
bp_i2c_drv_reset_t e e 154
bp_i2c_drv_xfer_async_abort_t e 154
bp_i2c_drv_xfer_async_t e e 155
bp_i2c_drv_xfer_t e e e e e e 155
BP_I2C_DRV_HNDL_IS_ NULL e e e e e e e e e e 156
BP_I2C_DRV_NULL_HNDL e e e e e e e e 156

19 SPI Driver 157
bp_spi_drv_cfg get t e 157
bp_spi_drv_cfg set t e e 158
bp_spi_drv_create_t. e e 159
bp_spi_drv_destroy_t e e e e 159
bp_spi_drv_dis_t e e e e 160
bp_spi_drv_en_t e e 160
bp_spi_drv_flush_t e 161
bp_spi_drv_idle_wait_t e e 161

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Contents viii
bp_spi_drv_is_en_t e e e 162
bp_spi_drv_reset_t e 162
bp_spi_drv_slave_desel_t 162
bp_spi_drv_slave_sel t e e 163
bp_spi_drv_xfer_async_abort_t e e 163
bp_spi_drv_xfer_async_t e e 164
bp_spi_drv_Xfer_t e e e 165
BP_SPI_DRV_HNDL_IS_NULL e e e e e e e e 165
BP_SPI_DRV_NULL_HNDL e e e e e e s e s e 165

20 UART Driver 166
bp_uart_cfg get t e e e 166
bp_uart_drv_cfg set_ t 167
bp_uart_drv_create_t e e e 167
bp_uart_drv_destroy_t e 168
bp_uart_drv_dis_t e 168
bp_uart_drv_en_t e 169
bp_uart_drv_is_en_t. e e e 169
bp_uart_drv_reset_t. e e e 170
bp_uart_drv_rx_async_abort_t e 170
bp_uart_drv_rx_async_t e e 171
bp_uart_drv_rx_flush_t e 171
bp_uart_drv_rx_idle_wait_t e 172
bp_uart_drv_rx_t . . e e e e e e 172
bp_uart_drv_tx_async_abort_t. e 173
bp_uart_drv_tx_async_t e e 173
bp_uart_drv_tx_flush_t e 174
bp_uart_drv_tx_idle_wait_t. e 174
bp_uart_drv_txX_t . . e e e e e 175
BP_UART_DRV_HNDLL_IS_NULL e e e e e s e e e e e 175
BP_UART_DRV_NULL_HNDL e e e e e e e e e 176

21 Timer Implementation 177
bp_timer_impl_halt() e 177
bp_timer_implinit() e e e 177
bp_timer_impl_next_update() e 178
bp_timer_impl_resume() e 178

22 Document Revision History 180

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

Overview

Welcome to the BASEplatformm API reference manual. This reference manual covers the BASEplatform
core API functions, data types and preprocessor definitions along with description and usage
information for each API element. The core API is written in ISO/IEC 9899:1999 (C99) compliant C and
designed to be portable between platforms and toolchains. Additional platform specific modules and
APIs are documented in separate manuals dedicated to each supported platforms.

For convenience during development, all the information related to each individual APl elements is also
reproduced within the relevant header source files in human readable format.

About the BASEplatform

The BASEplatform is a collection of low-level interface modules, drivers and board support packages
(BSPs) designed to provide the foundation for an embedded software application. The BASEplatform
can support a variety of free or commercial RTOSes as well as bare-metal applications, both in
multi-core and single core configurations. BASEplatform packages are created specifically for an
application’s needs, and usually include support for an RTOS or bare-metal, low level I/Os, such as UART,
12C, GPIO etc. as well as communication and storage stacks, as selected by the application developer,
alongside the necessary drivers, integration and IDE files to get everything working out of the box.

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 1 Overview | 2

Elements of the API Reference

Each documented API element, be it a function, data type or preprocessor definition is presented using
a similar layout which are described below. This section briefly describes the various elements of the
API reference.

Functions

The most numerous and important API elements documented are functions. Below is an example of API
reference for a hypothetical function named bp_example_func():

bp_example_func()

<example/bp_example.h>

Example function description.

Prototype int bp_example_func (uint32_t argl,
uint32_t arg2);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters argl First argument’s description.

arg2 Second argument’s description.
Returned RTNC_SUCCESS
Errors RTNC_FATAL
Example
uint32_t a

uint32_t b
int result;

Ou;
1lu;

result = bp_example_func(a, b);
if(result != RTNC_SUCCESS) \{
// Handle error.

\}

Function Name

At the top of each API is the name of the function or object as it appears in the source code.
BASEplatform functions are always prefixed with bp_ followed by the module name and then the
function’s specific name.

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 1 Overview | 3

Header

Following the name is the header file where the declaration of the documented API can be found. It is
recommended to use the displayed path relative to the root of the source directory of the BASEplatform
when including BASEplatform’s headers.

For example, to include the UART module header file bp_uart. h the following include directive is
recommended.

#include <uart/bp_uart.h>

The root of the BASEplatform source directory should be added to the include path of the compiler.

Description

A description of the API element including basic usage information.

Prototype

For functions, the full signature of the API along with parameter names, types, and function return type.

Attributes

For functions only, this section lists the relevant function attributes. See the function attributes section
of this manual for a detailed description of each attribute.

Parameters

Function parameters list along with a short description of each parameter.

Returned Errors or Return Values

For functions that return a BASEplatform standard error code, this section is named Returned Errors and
lists the relevant errors that can be returned. See the error handling convention section of this manual
for more information on the BASEplatform error handling.

For other functions that do not return a standard error code, this section lists the possible output values
of the function. In this case the section is named "Returned Values”.

Example

Some API functions may include a small code example to illustrate usage. Note that these examples are
for documentation purpose and may not include error handling and checking to keep the examples
concise.

Data Types

Data types include structure definitions, enumerated types as well as scalar type definitions. They all
follow a similar documentation layout, below is an example of API reference for a hypothetical structure
definition named bp_example_struct_t:

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Macro

JBLopen
Embedded Software Insight Chapter 1 Overview | 4

bp_example_struct_t

<example/bp_example.h>

Example structure description.
Members
member1l uint32_t First member’s description.

member2 uint32_t Second member’s description.

Data Type Name

At the top of each API is the name of the data type as it appears in the source code. In the case of
structures and enumerated types, this is always the typedef'd data type. BASEplatform types always
prefixed with bp_ followed by the module name and then the type’s specific name. Types are also
always suffixed with _t to differentiate them from other definitions.

Header

Following the name is the header file where the declaration of the documented API can be found. It is
recommended to use the displayed path relative to the root of the source directory of the BASEplatform
when including BASEplatform’s headers.

Description

A description of the data type including basic usage information.

Members/Enumeration Values

If documented, the API reference will list the structure members or the list of enumeration constants
along with a short description of each member. The list of members for opaque types with no publicly
accessible members are omitted from the list of members in the APl documentation.

Macros

Relevant and preprocessor macros that are part of the public APl are documented in the API reference.
This includes function-like macros as well as object-like macros. The latter is often referred to as
preprocessor definitions or simply defines. Below is an example of function-like macro named
BP_EXAMPLE_MACRO():

BP_EXAMPLE_MACRO ()

<example/bp_example.h>

Example macro description.

Prototype BP_EXAMPLE_MACRO (argl,
arg2);
Parameters argl First argument’s description.

arg2 First argument’s description.

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 1 Overview | 5

Expansion Macro expansion’s description.

Macro Name

At the top of each API is the name of the macro as it appears in the source code. BASEplatform
preprocessor definitions are always in capital letters and prefixed with BP_ followed by the module
name and then the macro’s specific name.

Header

Following the name is the header file where the declaration of the documented API can be found. It is
recommended to use the displayed path relative to the root of the source directory of the BASEplatform
when including BASEplatform’s headers.

Description

A description of the macro including basic usage information.

Parameters

Macro parameters list along with a short description of each parameter.

Expansion

For function-like macros an expansion section describes the macro’s expansion including the type if
applicable.

Function Attributes

The API reference documentation for API functions includes a set of attributes that clarifies in which
context it is safe to call a specific API function. The attributes are as follows:

Blocking
ISR-safe
Critical-safe
Thread-safe

Blocking

The function is potentially blocking, which means it can wait or pend on a kernel object such as a
semaphore or mutex, in order to wait for a resource to be available or for an operation to complete.
Some functions may be optionally blocking depending on the function’s arguments. Those functions are
always marked as blocking in the API reference regardless.

In a bare-metal environment, any function marked as blocking can potentially suspend the background
task while waiting for a specific interrupt. Many of those functions take a timeout parameter that can
be set to O to make them non-blocking (polling) if suspension of the background task is undesired.

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 1 Overview | 6

As a general rule, blocking functions should not be called from an interrupt service routine, also known
as interrupt handler or while the CPU interrupts are disabled. In addition, some RTOSes allow
suspending or locking the scheduler, when this is the case, blocking functions should not be called while
the scheduler is suspended or locked.

ISR-Safe

An ISR-safe function can be called from within an interrupt service routine. This also includes callback
functions that are called from an interrupt context. Note that while an ISR-safe function is usually
critical-safe this is not always the case. Also an ISR-safe function may not necessarily be thread-safe.

Critical Safe

Critical safe functions can be called when the CPU interrupts are disabled, this is also called a critical
context or sometimes a critical section. Critical sections are usually entered by calling a spinlock acquire
or critical section enter function. Calling a non-critical-safe function from within a critical section can
corrupt the state of the CPU'’s interrupt disable flags and cause runtime faults or data corruption.

Thread-Safe

A thread safe function guarantees correct operations between multiple threads or tasks when running
under a multitasking kernel. In the context of the BASEplatform API, thread-safe also implies thread
safety on an SMP system, which means it is safe to use the API function from different threads in
parallel. Due to the design of the BASEplatform, thread-safe functions are also re-entrant assuming that
the other function attributes, such as ISR safety, are respected.

Function Attributes in Header Files

Function attributes are documented slightly differently in the source header files in order to be more
concise and easier to maintain. The attributes are documented under an "Attributes” section and are
named as follows:

non-blocking

non-thread-safe
ISR-safe

e critical-section-safe

Absence of an attribute implies that the opposite attribute applies to the function. For example, in the
absence of any explicit function attribute in the header documentation, a function is assumed to be
blocking, thread-safe and not safe to call from ISRs and critical sections.

API Conventions

The BASEplatform APl adheres to a few conventions with respect to the naming, error handling and
timeouts that are useful for the application developers.

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 1 Overview | 7

Naming

The BASEplatform API function names are all written in lower case, except preprocessor macros which
are in upper case. Words within an object name are separated by underscores and the whole name is
prefixed with bp_ followed by the module name and finally the function specific part of the name.

For example, the time module function to get the current time is written as follows:
bp_time_get()
And the memory barrier macro from the architecture module, "arch” for short, is named as follows:

BP_ARCH_MB ()

Error Handling

Most API functions return a status in the form of a plain int as the function’s return value. As a general
exception, some functions that cannot fail are allowed to return nothing (void) or another value.

In general, the BASEplatform attempts to minimize the number of different error codes to simplify the
application’s error handling and improve performance. The list of possible error codes is included within
every function’s documentation. The meaning of each error code is also documented in a function’s
description. See the Error Codes chapter for a list of defined error codes.

As with other preprocessor macros and enumeration constants, the application should never rely on the
exact numerical value of any specific error code. However, two guarantees are made with respect to the
error code numerical values. The first is that RTNC_SUCCESS will always expand to O. The second is
that all other error codes are negative. Positive values are not used for any valid error code. Any
undefined or unexpected error code returned by a function should be treated as a fatal error.

Two error codes have the exact same meaning for all the functions, namely RTNC_SUCCESS and
RTNC_FATAL.

RTNC_SUCCESS is returned when a function completed successfully without issue.

RTNC_FATAL is returned if and only if an unexpected situation that should not happen at runtime is
detected. This includes invalid function arguments, internal data corruption and assertion failures within
the code. In addition, any unexpected error code returned from a function should be treated as a fatal
error. It is up to the application to decide on the proper action to perform upon receiving a fatal error.
As a general rule, the application should not perform any other calls to that module instance. Safety
critical applications should consider an RTNC_FATAL error code as a severe assertion failure and act
accordingly.

Some modules, especially IO modules such as UART and I12C, provides a reset API call that can be used
to reset the internal state of a module as well as the underlying peripheral. This can be used to attempt
to recover from a fatal error in case the error condition is temporary.

Timeouts

Most of the blocking functions have a timeout argument that takes a timeout value in milliseconds. The
timeout period is guaranteed to be at least the requested value rounded up to the next multiple of the
kernel's tick rate if necessary. Internally, the BASEplatform modules and drivers will attempt to respect
the timeout value as closely as possible while guaranteeing the minimum timeout value. However, RTOS

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 1 Overview | 8

scheduling, higher priority tasks and interrupt response time may increase the amount of time taken to
return from a timeout condition.

For all functions that take a timeout value, specifying a timeout value of O means that the function will
return immediately instead of blocking when having to wait on a mutex or an interrupt. A value of
TIMEOUT_INF or -1 will result in an infinite timeout.

Numerical Values of Macros and Enumeration Constants

To ease maintainability and ensure compatibility with future versions, the application should never rely
on enumeration constants and macros numerical value.

Driver API

Many of the BASEplatform modules, especially the IO modules, use drivers to perform hardware access.
In those situations the top-level module provides lifecycle management as well as thread-safety.
However, it may be desirable in some circumstances to access the driver API directly. The various driver
function signatures are gathered at the end of this manual but additional details may be available from
each platform'’s reference manual.

Advanced Driver API

Each driver is allowed to implement additional, driver specific, functionalities not available from the top
level module API. These functions are usually meant to control advanced features of the underlying
peripherals. Each I/0 module provides an API to retrieve the driver's handle which can be used to
access those advanced functions directly. There is also an optional locking mechanism that can be used
to ensure thread safety while performing direct operations on the drivers.

Accessing the Drivers Directly

It is also possible to access the drivers standard operation directly at the driver level. This reduces the
overhead associated the kernel mutexes and driver dereference at the cost of thread safety. As such,
direct driver access should be done with care. As with the case of the advanced driver features, there is
an optional exclusive lock mechanism that can be used to ensure thread safety.

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Macro

Chapter

Architecture

The architecture module, or ARCH module provides low-level CPU control functionalities as well as
important compiler abstractions. These include CPU interrupt flag manipulation, memory barriers,
endianness and compiler detection, alighnment requirements, and more. The ARCH module is divided in
various ports specific to a CPU and compiler combination. When necessary, additional files and API
specific to certain CPU cores are also included in the ARCH module.

The current architecture and toolchain need to be selected at compile time by including the relevant
port’s header file in a master configuration file named bp_arch_def_cfg.h.

bp_irq_flag_t
<arch/bp_arch.h>

Type used to store the CPU interrupt status flag returned by bp_slock_acquire_irqg_save() and
bp_critical_section_enter().

The value returned by those functions should not be manipulated by the application.

BP_ARCH_ALIGN_MAX
<arch/bp_arch.h>

Defined by the architecture port to the largest required alignment across all the fundamental data types.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Macro

Macro

Macro

Macro

Macro

Macro

JBLopen
Embedded Software Insight Chapter 2 Architecture | 10

BP_ARCH_COMPILER
<arch/bp_arch.h>

Defined by the architecture port to the current compiler. The list of defined compilers can be found in
bp_arch_def.h.

BP_ARCH_CORE_ID_GET()
<arch/bp_arch.h>

Returns the CPU id of the current core. On single core platforms, BP_ARCH_CORE_ID_GET () always
returns O.

BP_ARCH_CPU
<arch/bp_arch.h>

Defined by the architecture port to the current CPU architecture. The list of defined architectures can
be found in bp_arch_def.h.

BP_ARCH_DEBUG_BREAK()
<arch/bp_arch.h>

Inserts a software breakpoint. The current CPU core will break to the debugger if supported. The result
of hitting a software breakpoint with no debugger connected is platform specific but will usually trigger
a form of CPU fault or exception.

BP_ARCH_ENDIAN
<arch/bp_arch.h>

Defined by the architecture port to the endianness of the current platform. The list of endianness
definitions can be found in bp_arch_def.h.

BP_ARCH_INT_DIS()
<arch/bp_arch.h>

core’s interrupts are disabled. The result can be assigned to a variable of type bp_1irq_flag_t to save
the current state of the interrupt flags.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Macro

Macro

Macro

Macro

Macro

JBLopen
Embedded Software Insight Chapter 2 Architecture | 11

Critical sections such as bp_critical_section_enter () and bp_critical_section_exit()
or spinlocks, bp_slock_acquire_irqg_save() and bp_slock_release_irq_restore() are
usually preferable to unconditionally disabling and enabling interrupts.

BP_ARCH_INT_EN()
<arch/bp_arch.h>

Unconditionally enables CPU interrupts. On multi-core platforms only the current core’s interrupts are
enabled.

Critical sections such as bp_critical_section_enter () and bp_critical_section_exit()
or spinlocks, bp_slock_acquire_irqg_save() and bp_slock_release_irq_restore() are
usually preferable to unconditionally disabling and enabling interrupts.

BP_ARCH_IS_CRIT()
<arch/bp_arch.h>

Returns a non-zero value if interrupts are disabled, i.e. inside a critical context.

BP_ARCH_IS_INT()
<arch/bp_arch.h>

Returns a non-zero value if called from within an interrupt service routine.

BP_ARCH_IS_INT_OR_CRIT()
<arch/bp_arch.h>

Returns a non-zero value if currently called from an interrupt service routine or if interrupts are disabled.

BP_ARCH_MB()
<arch/bp_arch.h>

Memory barrier.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Macro

Macro

Macro

Macro

Macro

JBLopen
Embedded Software Insight Chapter 2 Architecture | 12

BP_ARCH_PANIC ()
<arch/bp_arch.h>

Panic, usually disables interrupts and breaks into an infinite loop or the debugger.

BP_ARCH_RMB()
<arch/bp_arch.h>

Read memory barrier, defaults to BP_ARCH_MB () for architectures without a specific read memory
barrier.

BP_ARCH_SEV()
<arch/bp_arch.h>

Send event. The BP_ARCH_SEV () macro expands to the current architecture’s send event instruction
used for SMP signalling between cores. On architectures without any send event instruction this macro
expands to a no-op instruction.

BP_ARCH_WFE()
<arch/bp_arch.h>

Wait for events. The BP_ARCH_WFE () macro expands to the current architecture’s wait for event
instruction used for SMP signalling between cores. On architectures without any wait for event
instruction this macro expands to a no-op instruction.

The difference between a wait for event and a wait for interrupt is architecture dependent. In case
there is no dedicated wait for event instruction this macro expands to BP_ARCH_WFI().

BP_ARCH_WFI()
<arch/bp_arch.h>

Wait for interrupts. The BP_ARCH_WFI () macro expands to the current architecture’s wait for interrupt
instruction. On architectures without any wait for interrupt instruction this macro expands to a no-op
instruction.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 2 Architecture | 13

BP_ARCH_WMB ()
<arch/bp_arch.h>

Write memory barrier, defaults to BP_ARCH_MB () for architectures without a specific write memory
barrier.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

Cache Management

The cache management module enables drivers and applications to perform cache maintenance
operations in a platform-independent manner. The various cache maintenance functions can be used to
ensure cache coherency when handling hardware buffers, shared memory and similar operations with
non-coherent masters in a SoC.

All the maintenance functions, regardless of the implementation, includes a suitable memory barrier at
the start and at the end of all the cache maintenance operations. This applies even if a length of zero is
passed to functions operating on a range as well as on platforms with no caches or with cache disabled.

The cache operations are not atomic and won't disable interrupts unless required by the platform. If a
cache operation must not be interrupted, a critical section or spinlock should be used around the call.
The cache operations are, however, thread-safe and re-entrant which means they can be used in parallel
without issues.

Cache operations can take a considerable amount of time depending on the range, state of the cache
and CPU/RAM performance. While they are marked as non-blocking, care should be taken not to
perform excessively long operations from within an interrupt or a critical context.

bp_cache_dcache_1inv_all()
<cache/bp_cache.h>
Invalidates the entire data cache. The entire data cache hierarchy and unified caches will be invalidated.

Invalidating the cache means clearing entries from the cache without writing them to main memory if
dirty.

Prototype void bp_cache_dcache_inv_all ();

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 3 Cache Management | 15

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

bp_cache_dcache_max_line_get()
<cache/bp_cache.h>

Returns the largest effective data cache line size. Usually this would be the largest cache line size in the
data cache hierarchy.

The special value O is returned when no cache is present or if the data cache line size is unknown.

Caches are usually assumed to be fully enabled. The return value of this function reflects the largest
data cache line size as if the entire data cache hierarchy was enabled.

Prototype uint32_t bp_cache_dcache_max_line_get ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Returned Largest data cache line size in bytes if known, O otherwise.
Values

bp_cache_dcache_min_1line_get()
<cache/bp_cache.h>

Returns the smallest effective data cache line size. Usually this would be the smallest cache line size in
the data cache hierarchy.

The special value O is returned when no cache is present or if the data cache line size is unknown.

Caches are usually assumed to be fully enabled. The return value of this function reflects the smallest
data cache line size as if the entire data cache hierarchy was enabled.

When considering the minimum alignment of DMA buffers, the largest cache line size should usually be
used. See bp_cache_dcache_max_Lline_get()

Prototype uint32_t bp_cache_dcache_min_line_get ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 3 Cache Management | 16
Returned Smallest cache line size in bytes if known, O otherwise.
Values

bp_cache_dcache_range_clean()

<cache/bp_cache.h>

Cleans an address range from the data cache.

A start address unaligned to a cache line will be truncated to be aligned with the next lowest cache line.

A length which is not a multiple of the cache line size will be rounded up to the next multiple of the
cache line size.

Cleaning the cache means writing the dirty cache lines but keeping them stored in the cache.

This function cannot fail and supports cleaning from address 0. Calling
bp_cache_dcache_range_clean() with a len of O will have no effect other than executing a
memory barrier.

Prototype void bp_cache_dcache_range_clean (void* p_addr,
size_t len);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters p_addr Start of the address range.
len Length of the range to clean in bytes.

bp_cache_dcache_range_cleaninv()

<cache/bp_cache.h>

Cleans and invalidates an address range from the data cache.

A start address unaligned to a cache line will be truncated to be aligned with the next lowest cache line.

A length which is not a multiple of the cache line size will be rounded up to the next multiple of the
cache line size.

Combines operation of both bp_cache_dcache_range_clean() and
bp_cache_dcache_range_inv () in one call. Some platforms may have optimized way of
performing the combined operation.

It should not be assumed that the clean and invalidate operation are atomic between each other.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 3 Cache Management | 17

This function cannot fail and supports cleaning from address 0. Calling
bp_cache_dcache_range_cleaninv () with a Llen of O will have no effect other than executing a
memory barrier.

Prototype void bp_cache_dcache_range_cleaninv (void=* p_addr,
size_t len);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters p_addr Start of the address range.
len Length of the range to clean and invalidate in bytes.

bp_cache_dcache_range_1inv()

<cache/bp_cache.h>

Invalidates an address range from the data cache.

A start address unaligned to a cache line will be truncated to be aligned with the next lowest cache line.

A length which is not a multiple of the cache line size will be rounded up to the next multiple of the
cache line size.

Invalidating the cache means clearing entries from the cache without writing them to main memory if
dirty.

This function cannot fail and supports cleaning from address 0. Calling
bp_cache_dcache_range_inv () with a Len of O will have no effect other than executing a memory
barrier.

Prototype void bp_cache_dcache_range_inv (void* p_addr,
size_t len);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters p_addr Start of the address range.
len Length of the range to invalidate in bytes.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 3 Cache Management | 18

bp_cache_1icache_inv_all()
<cache/bp_cache.h>

Cleans the entire instruction cache. bp_cache_icache_inv_all() will clean the entire instruction
cache hierarchy.

bp_cache_icache_inv_all() will not invalidate unified caches when present. It is the caller’s
responsibility of correctly handling any code that could be stored in the unified cache(s).

Invalidating the cache means clearing entries from the cache without writing them to main memory if
dirty.

Prototype void bp_cache_icache_inv_all ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

Spinlocks

The spinlock module, shortened to slock, provides spinlocks and critical sections enabling atomic
operations on both uni-processor and symmetric multiprocessor systems.

On uni-processor systems, the spinlocks reduces to simple critical sections, as such they can be used to
write code compatible with both uni- and multi-processor.

bp_critical_section_enter()
<slock/bp_slock.h>

Enters a critical section, disabling the interrupts and returning the CPU'’s interrupt flag state prior to the
call to bp_critical_section_enter (). An appropriate memory barrier will be executed by the
implementation to ensure proper synchronization.

The exact return value is implementation specific and should not be manipulated by the calling code.

bp_critical_section_enter () and bp_critical_section_exit() are compatible with
bare-metal, single core RTOS and SMP RTOSes and can be used as a simpler alternative to spinlocks.
However for maximum performance under SMP RTOSes, spinlocks are recommended.

Prototype bp_irq_flag_t bp_critical_section_enter ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Returned Interrupt status flag prior to calling bp_critical_section_enter ().
Values

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 4 Spinlocks | 20

bp_critical_section_exit()
<slock/bp_slock.h>

Exits a critical section, restoring the interrupt state from the flag argument. An appropriate memory
barrier will be executed by the implementation to ensure proper synchronization.

The exact values that flag can take is implementation specific and should not be manipulated by the
calling code. The result of passing any value except one returned by a previous call to
bp_critical_section_enter () is undefined.

bp_critical_section_enter () and bp_critical_section_exit() are compatible with
bare-metal, single core RTOS and SMP RTOSes and can be used as a simpler alternative to spinlocks.
However for maximum performance under SMP RTOSes, spinlocks are recommended.

Prototype void bp_critical_section_exit ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v] v | v

bp_slock_acquire()
<slock/bp_slock.h>

Acquires a spinlock. Under an SMP RTOS, bp_slock_acquire () will busy wait (spin) until the lock is
available. In a single core system bp_slock_acquire() will be reduced to a memory barrier.

Note that bp_slock_acquire () will not disable interrupts which is necessary to guarantee atomicity
and prevent deadlocks. bp_slock_acquire_irq_save() and bp_slock_acquire_irq_dis()
can be used instead when interrupts need to be disabled.

Prototype void bp_slock_acquire (bp_slock_t* p_lock);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters p_lock Pointer to the spinlock.

bp_slock_acquire_irq_dis()
<slock/bp_slock.h>

Acquires a spinlock and disables interrupts. Under an SMP RTOS, bp_slock_acquire_irq_dis()
will busy wait (spin) until the lock is available. In a single core system bp_slock_acquire_irq_dis()

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 4 Spinlocks ‘ 21

will disable interrupts and execute a memory barrier to enforce synchronization.

bp_slock_acquire_irq_dis() and bp_slock_release_irqg_en() used in pairs will
unconditionally disable and enable interrupts on entry and exit of the critical section. They can be used
as a leaner version of spinlocks when saving the interrupt flag state is unnecessary. Otherwise
bp_slock_acquire_irq_save() and bp_slock_release_irq_restore() should be used
when calling from within a critical section where interrupts could be disabled.

Prototype void bp_slock_acquire_irq_dis (bp_slock_t* p_lock);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v P | v
Parameters p_lock Pointer to the spinlock.

bp_slock_acquire_1irq_save()
<slock/bp_slock.h>

Acquires a spinlock, disables interrupts and returns the CPU'’s interrupt flag state. Under an SMP RTOS,
bp_slock_acquire_irqg_save() will busy wait (spin) until the lock is available. In a single core
system bp_slock_acquire_irq_save () will disable the interrupts and return the interrupt status
flag as well as executing a memory barrier to enforce synchronization.

The exact return value is implementation specific and should not be manipulated by the calling code.

Prototype bp_irq_flag_t bp_slock_acquire_irq_save (bp_slock_tx p_lock);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters p_lock Pointer to the spinlock.
Returned Interrupt status flag prior to calling bp_slock_acquire_irqg_save().
Values
bp_slock_release()

<slock/bp_slock.h>

Releases a spinlock. Under an SMP RTOS, bp_slock_release () will release the spinlock and signal
other cores which may be waiting on the lock. In a single core system bp_slock_release () will be

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 4 Spinlocks ‘ 22

reduced to a memory barrier.

Prototype void bp_slock_release (bp_slock_t*x p_lock);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters p_lock Pointer to the spinlock.

bp_slock_release_irq_en()
<slock/bp_slock.h>

Releases a spinlock and enables interrupts. Under an SMP RTOS, bp_slock_release_irqg_en() will
release the spinlock and signal other cores which may be waiting on the lock. In a single core system
bp_slock_release_irq_en() will enable interrupts and execute a memory barrier to enforce
synchronization.

bp_slock_acquire_irq_dis() and bp_slock_release_irqg_en() in a pair will unconditionally
disable and enable interrupts on entry and exit of the critical section. They can be used as a leaner
version of spinlocks when saving the interrupt flag state is unnecessary. Otherwise
bp_slock_acquire_irq_save() and bp_slock_release_irq_restore() should be used
when calling from within a critical section where interrupts are disabled.

Prototype void bp_slock_release_irq_en (bp_slock_tx p_lock);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v X | v
Parameters p_lock Pointer to the spinlock.

bp_slock_release_1irq_restore()
<slock/bp_slock.h>

Releases a spinlock and restores the interrupt state. Under an SMP RTOS,
bp_slock_release_irq_restore() will release the spinlock and signal other cores which may be
waiting on the lock. In a single core system bp_slock_release_1irq_restore() will restore the
interrupts as well as execute a memory barrier to enforce synchronization.

The exact values that flag can take is implementation specific and should not be manipulated by the
calling code. The result of passing any value except one returned by a previous call to
bp_slock_acquire_irq_save() is undefined.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

JBLopen
Embedded Software Insight

Prototype void bp_slock_release_irq_restore (bp_slock_t *

Chapter 4 Spinlocks |23

p_lock,

bp_irq_flag_t flag);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters p_lock Pointer to the spinlock.
flag Saved interrupt flag to restore.

bp_slock_t
<slock/bp_slock.h>

Spinlock datatype. Any spinlock variable should be cleared by setting them* to O prior to use.

BASEplatform APl Reference Manual

www.jblopen.com

https://www.jblopen.com

Chapter

Time

The time module is responsible for the system’s primary timebase as well as providing high resolution
time delays and time measurements. It is also the time base used by the generic timer module.

When running with an RTOS, the time module usually provides the kernel reference tick, with support
for dynamic or tickless mode for RTOSes that supports it.

Additionally, when running within and RTOS, the time delays provided by the time module are
implemented independently of the kernel software timers and delays. As such, they usually support a
higher resolution than the kernel offers and can be used where fine timing is required.

bp_time_freq_get()
<time/bp_time.h>
Returns the frequency of the primary time base.

This function cannot fail and in normal operation should always return a non-zero value. In special cases
where the frequency is unknown, O is returned.

Prototype uint32_t bp_time_freq_get ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned Frequency of the primary time base in hertz.

Values

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 5 Time | 25

bp_time_get()
<time/bp_time.h>
Returns the raw value of the primary time base counter.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, O is returned.

Prototype uint64_t bp_time_get ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned Raw 64-bit value of the primary counter.

Values

bp_time_get32()
<time/bp_time.h>

Returns the raw value of the primary time base counter, 32-bit version. The value returned is the same
as would result from truncating the returned value of bp_time_get () to the least significant 32 bits.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, O is returned.

Prototype uint32_t bp_time_get32 ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned Raw 32-bit value of the primary counter.

Values

bp_time_get_ms()
<time/bp_time.h>
Returns the current value of the primary time base counter in milliseconds.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, O is returned.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 5 Time 26
Prototype uinte4_t bp_time_get_ms ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v
Returned 64-bit counter value in milliseconds.
Values

bp_time_get_ms32()

<time/bp_time.h>
Returns the current value of the primary time base counter in milliseconds, 32-bit version.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, O is returned.

Prototype uint32_t bp_time_get_ms32 ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned 32-bit counter value in milliseconds.

Values

bp_time_get_ns()

<time/bp_time.h>
Returns the current value of the primary time base counter in nanoseconds.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, O is returned.

Prototype uinte4_t bp_time_get_ns ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 5 Time 27
Returned 64-bit counter value in nanoseconds.
Values

bp_time_get_ns32()
<time/bp_time.h>
Returns the current value of the primary time base counter in nanoseconds. 32-bit version.

This function cannot fail and in normal operation will always return a non-zero value. In special cases
where there is no active timebase, O is returned.

Prototype uint32_t bp_time_get_ns32 ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned 32-bit counter value in nanoseconds.

Values

bp_time_halt()
<time/bp_time.h>
Halts the primary time base. The primary timebase is halted until bp_time_resume () is called.

Halting and resuming the primary time base should be done for testing and debugging purpose only.

Prototype int bp_time_halt ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_time_init()
<time/bp_time.h>

Initializes the time module and the primary time base.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 5 Time | 28

bp_time_init() should be called before any other services that is dependent on the system
timebase are used.

bp_time_init() should only be called once. The result of subsequent calls after the first is undefined.

Prototype int bp_time_init ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | ox v | v

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_time_ms_to_raw()
<time/bp_time.h>
Converts milliseconds to the raw time base unit.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, O is returned.

Prototype uinté4_t bp_time_ms_to_raw ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Parameters

Returned Time value in the raw time base unit.

Values

bp_time_ms_to_raw32()
<time/bp_time.h>
Converts milliseconds to the raw time base unit, 32-bit version.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, O is returned.

Prototype uint32_t bp_time_ms_to_raw32 (uint32_t time_ms);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 5 Time 29
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters time_ms Time value in milliseconds.
Returned Time value in the raw time base unit.
Values

bp_time_ns_to_raw()
<time/bp_time.h>

Converts nanoseconds to the raw time base unit.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, O is returned.

Prototype uint64_t bp_time_ns_to_raw (uint64_t time_ns);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters time_ns Time value in milliseconds.
Returned Time value in the raw time base unit.
Values

bp_time_ns_to_raw32()
<time/bp_time.h>

Converts nanoseconds to the raw time base unit, 32-bit version.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, O is returned.

Prototype uint32_t bp_time_ns_to_raw32 (uint32_t time_ns);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 5 Time 30
Parameters time_ns Time value in milliseconds.

Returned Time value in the raw time base unit.

Values

bp_time_raw_to_ms()
<time/bp_time.h>
Converts a time value from the raw time base unit to milliseconds.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, O is returned.

Prototype uint64_t bp_time_raw_to_ms (uint64_t time_raw);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters time_raw Time value in the unit of the system time base.
Returned Time value in milliseconds.
Values

bp_time_raw_to_ms32()

<time/bp_time.h>
Converts a time value in the raw time base unit to milliseconds, 32-bit version.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, O is returned.

Prototype uint32_t bp_time_raw_to_ms32 (uint32_t time_raw);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters time_raw Time value in the unit of the system time base.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 5 Time 31
Returned Time value in milliseconds.
Values

bp_time_raw_to_ns()
<time/bp_time.h>
Converts a time value in the raw time base unit to nanoseconds.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, O is returned.

Prototype uinté4_t bp_time_raw_to_ns (uint64_t time_raw);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters time_raw Time value in the unit of the system time base.
Returned Time value in nanoseconds.
Values

bp_time_raw_to_ns32()

<time/bp_time.h>
Converts a time value in the raw time base unit to nanoseconds, 32-bit version.

This function cannot fail and in normal operation should always return a non-zero value for a non-zero
input. In special cases where the frequency is unknown, O is returned.

Prototype uint32_t bp_time_raw_to_ns32 (uint32_t time_raw);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters time_raw Time value in the unit of the system time base.
Returned Time value in nanoseconds.
Values

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 5 Time 32

bp_time_resume()
<time/bp_time.h>

Resumes the primary time base. Resumes the primary time base from where it was stopped by
bp_time_halt(). The result of calling resume when the timebase isn't halted is undefined.

Halting and resuming the primary time base should be done for testing and debugging purpose only.

Prototype int bp_time_resume ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_time_sleep()
<time/bp_time.h>
Sleeps for a specified amount of time in the platform’s raw timebase unit.

The wait method is chosen by the underlying implementation and will usually be a busy loop for small
delays and a timer interrupt for larger delays.

The amount of time slept is guaranteed to be at least the specified amount.

bp_time_sleep () should not be called from an interrupt service routine or with the interrupts
disabled. bp_time_sleep_busy () should be used instead. However long delays within interrupt
service routines or critical section could have a negative impact on the system performance and should
be used sparingly.

Prototype int bp_time_sleep (uint64_t time_raw);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox] X | v
Parameters time_raw Amount of time to sleep in the platform’s raw timebase unit.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 5 Time | 33

bp_time_sleep32()
<time/bp_time.h>
Sleeps for a specified amount of time in the platform’s raw timebase unit, 32-bit version.

The wait method is chosen by the underlying implementation and will usually be a busy loop for small
delays and a timer interrupt for larger delays.

The amount of time slept is guaranteed to be at least the specified amount.

bp_time_sleep32() should not be called from an interrupt service routine or with the interrupts
disabled. bp_time_sleep_busy32() should be used instead. However long delays within interrupt
service routines or critical section could have a negative impact on the system performance and should
be used sparingly.

Prototype int bp_time_sleep32 (uint32_t time_raw);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters time_raw Amount of time to sleep in the platform’s raw timebase unit.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_time_sleep_busy()
<time/bp_time.h>
Busy wait for a specified amount of time.

Contrary to bp_time_sleep (), bp_time_sleep_busy () will always perform a busy loop for short
and long delays. As such bp_time_sleep_busy () can always be called from an interrupt service
routine or with the interrupts disabled.

Interrupts are not disabled while waiting unless they are disabled prior to calling
bp_time_sleep_busy().

The amount of time slept is guaranteed to be at least the specified amount.

Long busy delays should usually be avoided, especially when running under an RTOS.

Prototype int bp_time_sleep_busy (uint64_t time_raw);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 5 Time 34
Parameters time_raw Amount of time to sleep in the raw timebase unit.

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_time_sleep_busy32()
<time/bp_time.h>
Busy wait for a specific amount of time, 32-bit version.

Contrary to bp_time_sleep (), bp_time_sleep_busy32() will always perform a busy loop for
short and long delays. As such bp_time_sleep_busy32() can always be called from an interrupt
service routine or with the interrupts disabled.

Interrupts are not disabled while waiting unless they are disabled prior to calling
bp_time_sleep_busy32().

The amount of time slept is guaranteed to be at least the specified amount.

Long busy delays should usually be avoided, especially when running under an RTOS.

Prototype int bp_time_sleep_busy32 (uint32_t time_raw);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters time_raw Amount of time to sleep in the raw timebase unit.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_time_sleep_busy_ms()
<time/bp_time.h>
Busy wait for a specific amount of time in milliseconds.

Contrary to bp_time_sleep (), bp_time_sleep_busy_ms () will always perform a busy loop for
short and long delays. As such bp_time_sleep_busy_ms () can always be called from an interrupt
service routine or with the interrupts disabled.

Interrupts are not disabled while waiting unless they are disabled prior to calling
bp_time_sleep_busy_ms().

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 5 Time | 35

The amount of time slept is guaranteed to be at least the specified amount.

Long busy delays should usually be avoided, especially when running under an RTOS.

Prototype int bp_time_sleep_busy_ms (uint32_t time_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters time_ms Amount of time to sleep in milliseconds.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_time_sleep_busy_ns()

<time/bp_time.h>

Busy wait for a specific amount of time in nanoseconds.

Contrary to bp_time_sleep (), bp_time_sleep_busy_ns () will always perform a busy loop for
short and long delays. As such bp_time_sleep_busy_ns() can always be called from an interrupt

service routine or with the interrupts disabled.

Interrupts are not disabled while waiting unless they are disabled prior to calling
bp_time_sleep_busy_ns().

The amount of time slept is guaranteed to be at least the specified amount.

Long busy delays should usually be avoided, especially when running under an RTOS.

Prototype int bp_time_sleep_busy_ns (uint32_t time_ns);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters time_ns Amount of time to sleep in nanoseconds.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 5 Time | 36

bp_time_sleep_ms()
<time/bp_time.h>
Sleeps for a specified amount of time in milliseconds.

The wait method is chosen by the underlying implementation and will usually be a busy loop for small
delays and a timer interrupt for larger delays.

The amount of time slept is guaranteed to be at least the specified amount.

bp_time_sleep_ms () should not be called from an interrupt service routine or with the interrupts
disabled. bp_time_sleep_busy_ms () should be used instead. However long delays within interrupt
service routines or critical section could have a negative impact on the system performance and should
be used sparingly.

Prototype int bp_time_sleep_ms (uint32_t time_ms);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v

Parameters time_ms Amount of time to sleep in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_time_sleep_ns()
<time/bp_time.h>
Sleeps for a specified amount of time in nanoseconds.

The wait method is chosen by the underlying implementation and will usually be a busy loop for small
delays and a timer interrupt for larger delays.

The amount of time slept is guaranteed to be at least the specified amount.

bp_time_sleep_ns () should not be called from an interrupt service routine or with the interrupts
disabled. bp_time_sleep_busy_ns() should be used instead. However long delays within interrupt
service routines or critical section could have a negative impact on the system performance and should
be used sparingly.

Prototype int bp_time_sleep_ns (uint32_t time_ns);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] X | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 5 Time 37
Parameters time_ns Amount of time to sleep in nanoseconds.

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_time_sleep_yield()
<time/bp_time.h>
Yields and wait for a specific amount of time in the raw timebase unit.

Contrary to bp_time_sleep (), bp_time_sleep_yield() will always perform an interrupt based
delay even for small delays. When running with an RTOS it is guaranteed to generate a context switch.

bp_time_sleep_yield() must not be called from an interrupt service routine or with the interrupts
disabled.

The amount of time slept is guaranteed to be at least the specified amount.

Prototype int bp_time_sleep_yield (uint64_t time_raw);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

vl ox X | v
Parameters time_raw Amount of time to sleep in the raw timebase unit.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_time_sleep_yield32()
<time/bp_time.h>
Yields and wait for a specific amount of time, 32-bit version.

Contrary to bp_time_sleep32(), bp_time_sleep_yield32() will always perform an interrupt
based delay even for small delays. When running with an RTOS it is guaranteed to generate a context
switch.

bp_time_sleep_yield32() must not be called from an interrupt service routine or with the
interrupts disabled.

The amount of time slept is guaranteed to be at least the specified amount.

Prototype int bp_time_sleep_yield32 (uint32_t time_raw);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 5 Time 38
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox X | v
Parameters time_raw Amount of time to sleep in the raw timebase unit.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_time_sleep_yield_ms()
<time/bp_time.h>
Yields and wait for a specific amount of time in milliseconds.

Contrary to bp_time_sleep_ms (), bp_time_sleep_yield_ms() will always perform an interrupt
based delay even for small delays. When running with an RTOS it is guaranteed to generate a context
switch.

bp_time_sleep_yield_ms () must not be called from an interrupt service routine or with the
interrupts disabled.

The amount of time slept is guaranteed to be at least the specified amount.

Prototype int bp_time_sleep_yield_ms (uint32_t time_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters time_ms Amount of time to sleep in milliseconds.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_time_sleep_yield_ns()
<time/bp_time.h>
Yields and wait for a specific amount of time in nanoseconds.

Contrary to bp_time_sleep (), bp_time_sleep_yield_ns() will always perform an interrupt
based delay even for small delays. When running with an RTOS it is guaranteed to generate a context
switch.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 5 Time | 39

bp_time_sleep_yield_ns() must not be called from an interrupt service routine or with the
interrupts disabled.

The amount of time slept is guaranteed to be at least the specified amount.

Prototype int bp_time_sleep_yield_ns (uint32_t time_ns);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters time_ns Amount of time to sleep in nanoseconds.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

Timers

The timer module offers generic high resolution timers based on a hardware time base provided by the
time module. Being independent of any RTOS the timers are available across all platforms supported by
the BASEplatform, including bare-metal. In addition, being derived from the primary timebase, the

generic timer’s resolution is usually higher than the kernel’s software timers.

bp_timer_create()

<timer/bp_timer.h>

Creates a new timer. When successful the newly created timer handle is returned through the p_hndl

argument.

When returning with an RTNC_NO_RESOURCE error, it is guaranteed that no resource has been
permanently allocated to prevent leaking.

Prototype

Attributes

Parameters

Returned
Errors

BASEplatform APl Reference Manual

int bp_timer_create (bp_timer_hndl_t* p_hndl);

Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
p_hndl Pointer to the returned timer handle.

RTNC_SUCCESS
RTNC_NO_RESOURCE
RTNC_FATAL

www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 6 Timers | 41

bp_timer_destroy()
<timer/bp_timer.h>

Destroys a timer. The timer is either returned to a pool of timers that can be reused or freed if the
memory allocator allows freeing memory.

Prototype int bp_timer_destroy (bp_timer_hndl_t hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters hndl Handle of the timer to destroy.
Returned RTNC_SUCCESS
Errors RTNC_NO_RESOURCE
RTNC_FATAL

bp_timer_halt()

<timer/bp_timer.h>

Halts the BASEplatform timer processing. This function should be used for testing and debugging only
to temporarily halt timer processing until bp_timer_resume () is called.

Prototype int bp_timer_halt ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_timer_init()
<timer/bp_timer.h>

Initializes the timer facility. bp_timer_init () should be called before any other services that are
dependent on the timers are used. In most cases, the time module should be initialized before the timer
module. See bp_time_init() for details.

bp_timer_init() should only be called once. The result of subsequent calls after the first is
undefined.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 6 Timers 42
Prototype int bp_timer_init ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X X v v
Returned RTNC_SUCCESS
Errors RTNC_FATAL
bp_timer_restart()

<timer/bp_timer.h>

Restarts a timer. The timer will be restarted and set to expire after time_raw has passed in the system’s
primary timebase from the last time it expired. Upon expiration, the original callback will be called.

To start a timer from the current time instead of the last expiration bp_timer_start () should be
used.

Prototype int bp_timer_restart (bp_timer_hndl_t hndl,
uinte4_t time_raw,
void * p_arg);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

X v v v
Parameters hndl Handle of the timer to restart.
time_raw Time to wait in the raw timebase unit.
p_arg Optional argument passed to the timer callback.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_timer_restart_ms()
<timer/bp_timer.h>

Restarts a timer. The timer will be started and set to expire after time_ms milliseconds has passed from
the last time it expired. Upon expiration, the original callback will be called.

To start a timer from the current time instead of the last expiration bp_timer_start_ms () should be
used.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 6 Timers 43
Prototype int bp_timer_restart_ms (bp_timer_hndl_t hndl,
uint32_t time_ms,
void * p_arg);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters hndl Handle of the timer to restart.
time_ms Time to wait in milliseconds.
p_arg Optional argument passed to the timer callback.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_timer_restart_ns()
<timer/bp_timer.h>

Restarts a timer. The timer will be started and set to expire after time_ns nanoseconds has passed
from the last time it expired. Upon expiration, the original callback will be called.

To start a timer from the current time instead of the last expiration bp_timer_start_ns () should be
used.

Prototype int bp_timer_restart_ns (bp_timer_hndl_t hndl,
uint32_t time_ns,
void * p_arg);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters hndl Handle of the timer to restart.
time_ns Time to wait in nanoseconds.
p_arg Optional argument passed to the timer callback.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 6 Timers | 44

bp_timer_resume()
<timer/bp_timer.h>

Resumes the BASEplatform timer processing. This function should be used for testing and debugging
only to resume timer processing after a call to bp_timer_halt().

Prototype int bp_timer_resume ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_timer_start()
<timer/bp_timer.h>

Starts a timer. The timer will be started and set to expire after the specified amount of time has passed
on the system raw timebase. Upon expiration p_callback will be called with p_arg passed as an
optional argument.

See bp_timer_cb_t for details about the callback functionality.

Prototype int bp_timer_start (bp_timer_hndl_t hndl,
uint64_t time_raw,
void * p_arg);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters hndl Handle of the timer to start.
time_raw Timer delay in the raw timebase unit.
p_arg Optional argument passed to the timer callback.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Function

JBLopen
Embedded Software Insight Chapter 6 Timers | 45

bp_timer_start_ms()
<timer/bp_timer.h>

Starts a timer. The timer will be started and set to expire after time_ms has passed in milliseconds.
Upon expiration p_callback will be called with p_arg passed as an optional argument.

See bp_timer_cb_t for details about the callback functionality.

Prototype int bp_timer_start_ms (bp_timer_hndl_t hndl,
uint32_t time_ms,
void * p_arg);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters hndl Handle of the timer to start.
time_ms Timer delay in milliseconds.
p_arg Optional argument passed to the timer callback.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_timer_start_ns()
<timer/bp_timer.h>

Starts a timer. The timer will be started and set to expire after time_ns has passed in nanoseconds.
Upon expiration p_callback will be called with p_arg passed as an optional argument.

See bp_timer_cb_t for details about the callback functionality.

Prototype int bp_timer_start_ns (bp_timer_hndl_t hndl,
uint32_t time_ns,
void * p_arg);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters hndl Handle of the timer to start.
time_ns Timer delay in nanoseconds.
p_arg Optional argument passed to the timer callback.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 6 Timers | 46

Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_timer_stop()
<timer/bp_timer.h>

Stops a timer. The timer will be stopped without calling its expiration callback. If the timer is not started
or has expired already bp_timer_stop () will return RTNC_SUCCESS without affecting the timer.

Prototype int bp_timer_stop (bp_timer_hndl_t hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters hndl Handle of the timer to stop.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_timer_target_get()
<timer/bp_timer.h>

Returns the timer target in the raw timebase unit. If successful the timer’s target expiration time is
returned through p_target;

Prototype int bp_timer_target_get (bp_timer_hndl_t hndl,
uint64_t * p_target);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters hndl Handle of the timer to query.

p_target Pointer to the returned target time.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 6 Timers | 47

bp_timer_action_t
<timer/bp_timer.h>

Action that can be returned from a timer’s callback function. See bp_timer_cb_t for details.

Values
BP_TIMER_STOP Stops the timer.
BP_TIMER_PERIODIC Restarts a timer with the same settings counting from the last timer ex-
piry.
BP_TIMER_RESTART Restarts a timer with new settings.

Data Type bp_t'i mer_cb_t
<timer/bp_timer.h>

Timer callback function signature type. The hnd1 argument is a handle to the expired timer. The
argument p_arg is set when creating the timer, see bp_timer_create() for details.

Three actions are possible when returning.

e BP_TIMER_STOP Stops the timer, removing it from the active timer list.

e BP_TIMER_PERIODIC Restart the timer using the same settings starting from the last timer
expiry.
e BP_TIMER_RESTART Restart the timer with new settings.

Prototype bp_timer_action_t bp_timer_cb_t (bp_timer_hndl_t hndl,
void * p_arg);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hnd1l

p_arg Callback argument set when creating the timer.

Returned Action of type bp_timer_action_t to perform with the timer once returning.
Values

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 6 Timers | 48

bp_timer_hndl_t

<timer/bp_timer.h>

Timer handle. Returned by bp_timer_create (). The pointer contained in the handle is private and
should not be accessed by calling code.

Members

p_tmr bp_timer_t * Pointer to the internal timer structure.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

Platform Clocks

The clock module offers a unified clock control interface to other BASEplatform modules and drivers as
well as the application across different platforms. This enables drivers and application code to be aware
of core and peripherals clock speed, state and control clock gating using a portable API.

The mapping of clock id and clock gates is SoC specific, details can be found in the platform’s
documentation.

bp_clock_dis()

<clock/bp_clock.h>

Disables a clock gate.

Disabling an already disabled clock should be without side effects.

Clock and gate id are implementation specific, the list of clocks and gates can be found in the platform’s
documentation.

It is implementation defined whether or not a clock and gate id with the same numerical value
corresponds to the same clock line.

Prototype int bp_clock_dis (1int clock_gate_id);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters clock_gate_-id Clock gate id of the clock gate to disable.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 7 Platform Clocks ‘ 50
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_clock_en()

<clock/bp_clock.h>

Enables a clock gate.

Enabling an already enabled clock should be without side effects.

Clocks and gates id are implementation specific, the clock and gate lines can be found in the platform’s
documentation.

It is implementation defined whether or not a clock and gate id with the same numerical value
corresponds to the same clock line.

Prototype int bp_clock_en (1int clock_gate_id);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v
Parameters clock_gate_-id Clock gate id of the clock gate to enable.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_clock_freq_get()
<clock/bp_clock.h>
Returns the clock frequency of clock clock_id when known, otherwise O is returned.

When a clock is gated, bp_clock_freq_get () will return the clock frequency as if the clock wasn’t
gated, if possible, instead of 0. bp_clock_1is_en() can be called to query if the clock is gated or not.

Clocks and gates id are implementation specific, the clock and gate mapping can be found in the
platform’s documentation.

It is implementation defined whether or not a clock and gate id with the same numerical value
corresponds to the same clock line.

Prototype int bp_clock_freq_get (int clock_id,
uint32_t* p_freq);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 7 Platform Clocks | 51
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters clock_1id Clock id of the clock to query.
p_freq Returned frequency in hertz.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_clock_gate_1id_is_valid()
<clock/bp_clock.h>

Checks if a clock gate id is valid for the current platform. The validity of the clock gate <d is returned as
the function return value for brevity since the function cannot fail.

Prototype bool bp_clock_gate_id_is_valid (clock_id);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

X v v v
Parameters clock_1id Clock gate id to check.
Returned true if the clock gate id is valid, false otherwise.
Values

bp_clock_1id_1is_valid()
<clock/bp_clock.h>

Checks if a clock id is valid for the current platform. The validity of the clock id is returned as the
function return value for brevity since the function cannot fail.

Prototype bool bp_clock_id_is_valid (1int clock_id);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters clock_1id Clock id to check.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 7 Platform Clocks | 52
Returned true if the clock id is valid, false otherwise.
Values

bp_clock_is_en()

<clock/bp_clock.h>
Returns the enabled or disabled state of a clock gate.

Clocks and gates id are implementation specific, the list of clocks and gate lines can be found in the
platform’s documentation.

It is implementation defined whether or not a clock and gate id with the same numerical value
corresponds to the same clock line.

Prototype int bp_clock_is_en (1int clock_gate_1id,
bool * p_state);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Parameters clock_gate_did Clock gate id of the clock gate to query.

p_state Returned state, true if enabled false otherwise.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

Platform Resets

The reset module provides a unified reset interface to other BASEplatform modules and drivers as well
as the application. This enables drivers and application code to control peripheral reset lines using a
portable API.

Peripheral reset ids are platform specific, the exact mapping can be found in the platform
documentation.

Not all platforms have a way to control individual peripheral reset lines. With those platforms the API
calls are still defined but have no effect.

bp_periph_reset_assert()
<reset/bp_reset.h>

Asserts a peripheral reset.

Asserting an already asserted reset lines should be without side effects.

Peripheral reset ids are implementation specific, the list of reset lines can be found in the platform’s
documentation.

Prototype int bp_periph_reset_assert (1int periph_reset_id);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters periph_reset_did Peripheral reset line id to assert.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 8 Platform Resets 54
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_periph_reset_deassert()

<reset/bp_reset.h>
Deasserts a peripheral reset.
Deasserting an already deasserted reset lines should be without side effects.

Peripheral reset ids are implementation specific, the list of peripheral reset lines can be found in the
platform’s documentation.

Prototype int bp_periph_reset_deassert (1int periph_reset_id);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v
Parameters periph_reset_id Peripheral reset line id to deassert.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_periph_reset_id_1is_valid()
<reset/bp_reset.h>

Checks if a peripheral reset id is valid for the current platform. The validity of the reset
periph_reset_id is returned as the function return value for brevity since the function cannot fail.

Prototype bool bp_periph_reset_id_is_valid (1int periph_reset_id);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters periph_reset_-id Peripheral reset id to check.
Returned true if the peripheral reset id is valid, false otherwise.
Values

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 8 Platform Resets | 55

bp_periph_reset_is_asserted()

<reset/bp_reset.h>

Returns the state of a peripheral reset line. If successful, the state of the reset line periph_reset_id
will be returned through p_is_asserted.

Peripheral reset ids are implementation specific, the list of peripheral reset lines can be found in the
platform’s documentation.

Prototype int bp_periph_reset_is_asserted (int periph_reset_-id,
bool * p_is_asserted);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters periph_reset_-id Peripheral reset line id to query.
p_is_asserted Pointer to the returned state, set to true if the peripheral is

in reset, false otherwise.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

Interrupt Management

The interrupt management module handles the platform’s interrupt controller as well as the list of
interrupt service routines, also known as interrupt handlers.

By default, interrupts are initialized to their lowest priority. The interrupt default type, either edge or
level, as well as its default polarity are implementation dependent.

When registering an interrupt, it is automatically configured to target the current core on multi-core
architectures.

bp_int_arg_get()

<int/bp_int.h>

Returns the argument of the current interrupt.

Prototype void * bp_int_arg_get ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned Argument of the current interrupt.

Values

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 9 Interrupt Management | 57

bp_int_dis()
<int/bp_int.h>

Disables the interrupt controller. This function should be used for testing and debugging only. The
interrupt controller is usually enabled automatically after it is initialized and stays enabled permanently
until the platform is shutdown or reset. To temporarily disable and re-enable interrupts the architecture
interrupt disable functions should be used. See BP_ARCH_INT_DIS() and BP_ARCH_INT_EN() for
details.

To enable or disable a single interrupt id use bp_int_src_en() and bp_int_src_dis().

Prototype int bp_int_dis ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | x| v | v

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_int_en()
<int/bp_int.h>

Enables the interrupt controller. This function should be used for testing and debugging only. The
interrupt controller is usually enabled automatically after it is initialized and stays enabled permanently
until a platform shutdown or reset is performed. To temporarily disable and re-enable interrupts the
architecture interrupt disable functions should be used. See BP_ARCH_INT_DIS() and
BP_ARCH_INT_EN() for details.

To enable or disable a single interrupt id use bp_int_src_en() and bp_int_src_dis().

Prototype int bp_int_en ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | x| v | v

Returned RTNC_SUCCESS

Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 9 Interrupt Management | 58

bp_int_id_1is_valid()
<int/bp_int.h>

Checks if an interrupt id is valid for the current platform. The validity of the interrupt d is returned as
the function return value for brevity since the function cannot fail.

Prototype bool bp_int_id_is_valid (int 1id);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Parameters id Interrupt id to check.

Returned true if the interrupt id is valid, false otherwise.

Values

bp_int_init()
<int/bp_int.h>

Initializes and enables the platform’s interrupt controller. bp_int_init () should usually be called
early in the platform initialization process before the OS or bare-metal environment is initialized.

Most interrupt controller implementations will use statically allocated resources at compile time. For the
implementations that do require run-time allocation, bp_int_init () could return an
RTNC_NO_RESOURCE error. See the implementation’s documentation for details.

Prototype int bp_int_init ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | x| v | v
Returned RTNC_SUCCESS
Errors RTNC_NO_RESOURCE
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 9 Interrupt Management | 59

bp_int_prio_get()
<int/bp_int.h>

Retrieves the priority of an interrupt source. The priority of the interrupt source will be returned
through p_priority.

The range, meaning and order of interrupt priorities is implementation defined and usually follows the
platform’s convention.

Prototype int bp_int_prio_get (int id,
uint32_t* p_priority);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v
Parameters id Interrupt id to query.

p_priority Pointer to the returned interrupt priority.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_int_prio_highest_get()
<int/bp_int.h>

Returns the numerical value of the highest possible interrupt priority.

Prototype uint32_t bp_int_prio_highest_get ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned Numerical value of the highest interrupt priority.

Values

bp_int_prio_lowest_get()
<int/bp_int.h>

Returns the numerical value of the lowest possible interrupt priority.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 9 Interrupt Management | 60
Prototype uint32_t bp_int_prio_lowest_get ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Returned Numerical value of the lowest interrupt priority.
Values

bp_int_prio_next_get()
<int/bp_int.h>

Returns the numerical value of the next interrupt priority level higher than prio.

In case the next highest priority level is higher than the maximum possible, the maximum interrupt
priority level will be returned.

Prototype uint32_t bp_int_prio_next_get (uint32_t prio);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters prio Interrupt priority.
Returned Numerical value of the next interrupt priority.
Values

bp_int_prio_prev_get()
<int/bp_int.h>

Returns the numerical value of the previous interrupt priority level lower than prio.

In case the previous lowest priority level is lower than the minimum possible, the minimum interrupt
priority level will be returned.

Prototype uint32_t bp_int_prio_prev_get (uint32_t prio);
Attributes Blocking | ISR-safe | Criticalsafe | Thread-safe
x | v v | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 9 Interrupt Management | 61
Parameters prio Interrupt priority.

Returned Numerical value of the previous interrupt priority.

Values

bp_int_prio_set()
<int/bp_int.h>

Sets the priority of an interrupt source. The interrupt id’s priority will be set to priority. Attempting
to configure an invalid priority level for the current interrupt controller will return an RTNC_FATAL error.

The range, meaning and order of interrupt priorities is implementation defined and usually follows the
platform’s convention.

It is implementation specific whether changing the priority of a pending interrupt will be effective
immediately.

Prototype int bp_int_prio_set (int id,
uint32_t priority);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters id Interrupt id to set.
priority Interrupt priority value.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_int_reg()
<int/bp_int.h>

Registers an interrupt service routine. Sets the ISR handler of the interrupt source id to the function
handler. The optional argument p_arg will be passed to the interrupt handler when invoked. See the
bp_int_handler_t documentation for details.

Setting a NULL handler will effectively unregister any ISR registered to that interrupt id. It is the
caller’s responsibility to make sure the interrupt source is disabled prior to unregistering an ISR.

The result of an interrupt firing without a registered handler is implementation specific. See the
implementation’s documentation for details.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 9 Interrupt Management | 62
Prototype int bp_int_reg (int id,
bp_int_handler_t handler,
void * p_arg);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters id Interrupt id to register.
handler Function pointer to the interrupt handler.
p_arg Argument passed to the interrupt handler.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_int_src_dis()
<int/bp_int.h>
Disables an interrupt source.

It is implementation specific whether disabling a pending interrupt before it is executed will cancel the
pending interrupt.

Prototype int bp_int_src_dis (1int 1id);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Parameters id Interrupt id to disable.

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_int_src_en()

<int/bp_int.h>

Enables an interrupt source. The interrupt source -id will be enabled even if no ISR is registered for that
interrupt id. It is the caller’s responsibility to make sure that an ISR is registered to that particular
interrupt id before enabling the interrupt. See bp_int_reg() for details.

Prototype int bp_int_src_en (int 1id);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 9
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters id Interrupt id to enable.
Returned RTNC_SUCCESS
Errors RTNC_FATAL
bp_int_src_1is_en()

<int/bp_int.h>

Interrupt Management

63

Checks if an interrupt source is enabled. Returns the enabled status of the interrupt through p_is_en.

Prototype int bp_int_src_is_en (int id,
bool *x p_is_en);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters id Interrupt id to query.
p_is_en Pointer to the result, set to true if the interrupt is enabled, false oth-
erwise.
Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_int_trig()
<int/bp_int.h>

Triggers a software interrupt.

It is implementation defined whether or not an interrupt can be triggered in software.

Prototype int bp_int_trig (1int 1id);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Parameters id Interrupt id to trigger.

BASEplatform APl Reference Manual

www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 9 Interrupt Management | 64
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_int_type_get()
<int/bp_int.h>

Gets the trigger type of an interrupt source. The trigger type will be returned through p_type.

Prototype int bp_int_type_get (int id,
bp_int_type_t*x p_type);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters id Interrupt id to query.

p_type Pointer to the returned interrupt type.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_int_type_set()
<int/bp_int.h>
Sets the trigger type of an interrupt source.

Not all trigger types may be supported on an interrupt controller. It is implementation dependent
whether or not an RTNC_NOT_SUPPORTED error is returned when attempting to set an unsupported
trigger type. Implementations are free to set a different trigger type when appropriate. Calling
bp_int_type_get() will return the actual type when known.

Implementations that do not support changing the interrupt trigger type at runtime will usually ignore
the configuration and return successfully.

Prototype int bp_int_type_set (int id,
bp_int_type_t type);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters id Interrupt id to configure.

type Interrupt type.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen
Embedded Software Insight Chapter 9 Interrupt Management | 65

Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_int_type_t
<int/bp_int.h>

Interrupt type used to set both the sensitivity type, either edge or level and polarity. Not all values may
be supported by a specific interrupt controller.

See bp_int_type_set() and bp_int_type_get () for details.

Values
BP_INT_TYPE_LEVEL_HIGH High-level sensitivity.
BP_INT_TYPE_LEVEL_LOW Low-level sensitivity.

BP_INT_TYPE_EDGE_RISING Rising edge sensitivity.
BP_INT_TYPE_EDGE_FALLING Falling edge sensitivity.
BP_INT_TYPE_EDGE_ANY Any edge or toggle type interrupt sensitivity.

bp_int_handler_t
<int/bp_int.h>
Interrupt handler function signature type.

The argument p_int_argis taken from the p_arg argument used when registering an interrupt
handler with bp_int_reg().

The interrupt id int_-id is passed to the interrupt handler if know.

The source argument is the id of the CPU core that triggered the interrupt on SMP platforms
otherwise it is set to O.

Prototype void bp_int_handler_t (void * p_int_arg,
int int_did,
uint32_t source);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters p_int_arg User-defined interrupt argument.
int_did Interrupt id of the current interrupt if known.
source Core id of the signaling core for inter-core interrupts.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 9 Interrupt Management | 66

BP_INT_ID_NONE
<int/bp_int.h>

Special invalid interrupt value.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

Interrupt SMP Extension

SMP extension of the interrupt management API. The SMP extensions are used to fine-tune interrupt
behaviour on SMP platforms. Note that the SMP extension API will work in an AMP configuration on an

SMP platform as well to control interrupt targeting and triggering between cores.

bp_int_smp_src_dis()
<int/bp_int_smp.h>

Disables an interrupt source on a specific core.

It is implementation specific whether disabling a pending interrupt before it is executed will cancel the
pending interrupt.

Prototype

Attributes

Parameters

Returned
Errors

int bp_int_smp_src_dis (1int id,
uint32_t core_id);

Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
id Interrupt id to disable.
core_1id ID of the core to target.

RTNC_SUCCESS
RTNC_FATAL

BASEplatform APl Reference Manual

www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 10 Interrupt SMP Extension | 68

bp_int_smp_src_en()
<int/bp_int_smp.h>

Enables an interrupt source on a specific core. The interrupt source id will be enabled even if no ISR is
registered for that interrupt id. It is the caller’s responsibility to make sure that an ISR is registered to
that particular interrupt id before enabling the interrupt. See bp_int_reg() for details.

Prototype int bp_int_smp_src_en (int id,
uint32_t core_id);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters id Interrupt id to enable.
core_1id ID of the core to target.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_int_smp_trig()
<int/bp_int_smp.h>
Triggers a software interrupt targeting a specific core.

It is implementation defined whether or not an interrupt can be triggered in software. It is also
implementation defined which interrupts can be targeted to a specific core. In case an interrupt can be
triggered by software but cannot be targeted to a specific core the behaviour will be the same as if
bp_int_trig() was called.

For maximum portability, bp_int_trig() should be used to trigger a peripheral interrupt.

Prototype int bp_int_smp_trig (int id,
uint32_t core_id);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters id Interrupt id to trigger.
core_1id ID of the core to target.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

GPIO

The GPIO module allows control over a platform’s General Purpose 1/Os. It can also be used to access
various types of external I/O expanders.

In contrast to the majority of the BASEplatform peripheral interface modules, the GPIO module API is
non-blocking since driver implementations are usually atomic by design. Most of the GPIO module API
can be called from a critical or interrupt context. However, as a general exception, drivers for external
I/O expanders can be blocking, especially if accessing an 12C or SPI expander.

The meaning of the bank and pin numbers are platform specific, and usually follows the MCU or SoC's
numbering as documented in the manufacturer’'s manuals. Additional details about each GPIO
implementation can be found by consulting the individual driver’s documentation.

bp_gpio_create()
<gpio/bp_gpio.h>

Creates a new GPIO module instance. The created GPIO instance is associated with the GPIO
peripheral definition p_def. If successful, a handle to the newly created instance is returned through
the p_hnd1 argument. After returning from a successful call to bp_gpio_create () the newly created
instance is in the created state and should subsequently be enabled to be fully functional. See
bp_gpio_en() for details.

The GPIO definition structure p_def must be unique and can only be associated with a single GPIO
instance. Once created, the UART instance is assigned a name that can be used afterward to retrieve
the interface handle by calling bp_gpio_hndl_get (). The assigned name is set from the board
definition structure p_def and must be unique.

A GPIO peripheral cannot be created more than once. If an attempt is made to open the same interface
twice, bp_gpio_create() returns an RTNC_ALREADY_EXIST error without affecting the already
opened interface.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 11 GPIO | 70

The board definition p_def passed to bp_gpio_create () must be kept valid for the lifetime of the
application once the GPIO interface is open.

When bp_gpio_create() returns with either an RTNC_NO_RESOURCE or RTNC_ALREADY_EXIST
error, the destination of p_hnd1 is left unmodified.

Unless specified otherwise in the driver documentation, opening, enabling or disabling a GPIO interface
will not alter or clear the direction and pin state of the GPIO interface.

Prototype int bp_gpio_create (constbp_gpio_board_def_tx p_def,
bp_gpio_hndl_t * p_hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | oox | x| v
Parameters p_def Board definition of the GPIO peripheral to initialize.

p_hndl Handle to the created GPIO module instance.

Returned RTNC_SUCCESS

Errors RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

Example

extern bp_gpio_board_def_t g_gpio0;
bp_gpio_hndl_t gpio_hndl

bp_gpio_create(\&g_gpio0d, \&gpio_hndl);

bp_gpio_data_get()
<gpio/bp_gpio.h>

Gets the state of a GPIO pin. Returns the data state of pin number pin of bank bank through the
argument p_data. p_data will be set to either O or 1.

Prototype int bp_gpio_data_get (bp_gpio_hndl_t hndl,
uint32_t bank,
uint32_t pin,
uint32_t * p_data);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 11 GPIO 71
Parameters hndl Handle of the GPIO interface to query.

bank Bank number of the pin to query.

pin Pin number of the pin to query.

p_data Pointer to the returned data state.

Returned RTNC_SUCCESS
Errors RTNC_FATAL
bp_gpio_data_set()

<gpio/bp_gpio.h>

Sets the state of a GPIO pin. Set the state of pin number pin of bank bank to the data specified by
data. Data should be either O or 1.

Prototype int bp_gpio_data_set (bp_gpio_hndl_t hndl,
uint32_t bank,
uint32_t pin,
uint32_t data);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

X v v v

Parameters hndl Handle of the GPIO interface to set.
bank Bank number of the pin to set.
pin Pin number of the pin to set.
data State of the pin to set.

Returned RTNC_SUCCESS
Errors RTNC_FATAL
bp_gpio_data_tog()

<gpio/bp_gpio.h>

Toggles the state of a GPIO pin. Toggle the the data value from low to high or from high to low of pin
number pin of bank bank.

Prototype int bp_gpio_data_tog (bp_gpio_hndl_t hndl,
uint32_t bank,
uint32_t pin);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 11 GPIO | 72

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v

Parameters hndl Handle of the GPIO interface to toggle.
bank Bank number of the pin to toggle.

pin Pin number of the pin to toggle.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_destroy()

<gpio/bp_gpio.h>

Destroys a GPIO module instance. When supported, bp_gpio_destroy () will free up all the
resources allocated to the GPIO module instance, including the peripheral driver and internal data
structures. Depending on the memory allocation policy of the default memory allocator, it may not be
possible to free previously allocated memory, in that case RTNC_NOT_SUPPORTED is returned and the
GPIO module instance is left unaffected.

It is not necessary, but strongly recommended, to disable a GPIO instance by calling bp_gpio_dis()
before attempting to destroy it. This helps ensure that no race condition exists between the instance
destruction and ongoing operations.

The result of using a GPIO module handle after its underlying instance is destroyed is undefined.

Prototype int bp_gpio_destroy (bp_gpio_hndl_t hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | oox | x| v
Parameters hndl Handle of the GPIO module instance to destroy.
Returned RTNC_SUCCESS
Errors RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_gpio_dir_get()

<gpio/bp_gpio.h>

Gets the direction of a GPIO pin. Returns the direction of pin number pin of bank bank through the
argument p_dir.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 11 GPIO | 73

Prototype

Attributes

Parameters

Returned
Errors

int bp_gpio_dir_get (bp_gpio_hndl_t hndl,
uint32_t bank,
uint32_t pin,
bp_gpio_dir_t* p_dir);

Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v | v | v

hndl Handle of the GPIO interface to query.
bank Bank number of the pin to query.

pin Pin number of the pin to query.

p_dir Pointer to the returned direction.

RTNC_SUCCESS
RTNC_FATAL

bp_gpio_dir_set()
<gpio/bp_gpio.h>

Sets the direction of a GPIO pin. Sets the direction of pin number pin of bank bank to the direction
specified by dir.

Prototype

Attributes

Parameters

Returned
Errors

int bp_gpio_dir_set (bp_gpio_hndl_t hndl,
uint32_t bank,
uint32_t pin,
bp_gpio_dir_t dir);

Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v | v | v

hndl Handle of the GPIO interface to set.
bank Bank number of the pin to set.

pin Pin number of the pin to set.

dir Direction of the pin to set.

RTNC_SUCCESS
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 11 GPIO | 74

bp_gpio_dis()
<gpio/bp_gpio.h>

Disables a GPIO interface. The exact side effects of disabling an interface is driver dependent. In
general, the peripheral is disabled at the peripheral level, and, when possible, the module clock is gated.

The result of calling bp_gpio_dis() or any other functions other than bp_gpio_en() or
bp_gpio_reset() on an already disabled interface is undefined. With assertion checking enabled,
some drivers will return an RTNC_FATAL error when attempting to access a disabled interface. The
current enabled/disabled state of an interface can be queried using bp_gpio_is_en().

Unless specified otherwise in the driver documentation, opening, enabling or disabling a GPIO interface
will not alter or clear the direction and pin state of the GPIO interface.

To optimize performance and footprint, GPIO drivers are allowed to ignore the calls to bp_gpio_en()
and bp_gpio_dis() and be in the enabled state permanently after being opened. For compatibility
with future releases and portability between GPIO drivers bp_gpio_en() should be called before
attempting to use a newly opened GPIO interface.

Prototype int bp_gpio_dis (bp_gpio_hndl_t hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Parameters hndl Handle of the GPIO module instance to disable.

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_gpio_drv_hndl_get()
<gpio/bp_gpio.h>

Returns the driver handle associated with a GPIO module instance. The underlying driver handle will be
returned through p_drv_hnd1l. The driver handle can be used to perform operations with the driver
interface directly or to access driver specific features.

Prototype int bp_gpio_drv_hndl_get (bp_gpio_hndl_t hnd1l,
bp_gpio_drv_hndl_t * p_drv_hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 11 GPIO | 75

Parameters hndl Handle of the GPIO module instance to query.
p_drv_hndl Pointer to the GPIO driver handle.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_en()
<gpio/bp_gpio.h>

Enables a GPIO interface. Enabling an interface in the disabled state will, depending on the driver,
enable the peripheral clock, de-assert reset, if asserted, and enable modifications of the GPIO states.

Calling bp_gpio_en() on an enabled interface should be without side effect.

Unless specified otherwise in the driver documentation, opening, enabling or disabling a GPIO interface
will not alter or clear the direction and pin state of the GPIO interface.

To optimize performance and footprint, GPIO drivers are allowed to ignore the calls to bp_gpio_en()
and bp_gpio_dis() and be in the enabled state permanently after being opened. For compatibility
with future releases and ensure portability between GPIO drivers, bp_gpio_en () should be called
before attempting to use a newly opened GPIO module instance.

Prototype int bp_gpio_en (bp_gpio_hndl_t hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Parameters hndl Handle of the GPIO module instance to enable.

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_gpio_hndl_get()
<gpio/bp_gpio.h>

Retrieves a previously created GPIO instance handle by name. If found, the result is returned through
the p_hnd1l argument, otherwise RTNC_NOT_FOUND is returned and p_hnd is left as it was before the
call to bp_gpio_hnd1l_get().

The name of an instance is set in the bp_gpio_board_def_t board definition passed to
bp_gpio_create().

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 11 GPIO | 76

Prototype int bp_gpio_hndl_get (const char * p_name,
bp_gpio_hndl_t *x p_hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters p_name Name of the GPIO instance to retrieve.

p_hndl Pointer to the GPIO interface handle.

Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND
RTNC_FATAL

bp_gpio_is_en()
<gpio/bp_gpio.h>

Returns the enabled/disabled state of a GPIO interface. If successful, the state of the GPIO interface
hnd1 will be returned through argument p_1is_en.

The state of an interface is checked atomically in a non-blocking way. As such, bp_gpio_is_en() can
be called while another operation is in progress without blocking or from an interrupt service routine.

Prototype int bp_gpio_is_en (bp_gpio_hndl_t hndl,
bool * p_is_en);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v
Parameters hndl Handle of the GPIO interface to check.

p_is_en Returned interface state, true if enabled false otherwise.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_reset()
<gpio/bp_gpio.h>

Resets a GPIO module instance. Upon a successful call to bp_gpio_reset () the GPIO interface is left
in the created state, equivalent to the state a newly created instance. Before using the instance again it
must be re-enabled, see bp_gpio_en().

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen
Embedded Software Insight Chapter 11 GPIO | 77

Pin states are likely to be lost after a reset, reset a platform’s GPIO peripheral should be done with care.

Prototype int bp_gpio_reset (bp_gpio_hndl_t hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v

Parameters hndl Handle of the GPIO interface to reset.

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_gpio_dir_t
<gpio/bp_gpio.h>

GPIO direction. Enumeration of the possible GPIO direction values used by the GPIO module and
drivers.

See bp_gpio_dir_set() and bp_gpio_dir_get() for usage details.
Values
BP_GPIO_DIR_NONE Special NULL value.

BP_GPIO_DIR_IN GPIO pin configured as input.
BP_GPIO_DIR_OUT GPIO pin configured as output.

bp_gpio_board_def_t
<gpio/bp_gpio.h>

GPIO board level hardware definition. Complete definition of a GPIO interface, including the name, BSP
as well as the SoC level definition structure of type bp_gpio_soc_def_t providing the driver and
driver specific parameters. The overall definition of a GPIO interface should be unique, including the
name, for each GPIO module instance to prevent conflicts.

BSP definitions are driver specific an usually not required, when that is the case p_bsp_def should be
set to NULL. See the driver’'s documentation for details.

See bp_gpio_create() for usage details.
Members

p_soc_def const bp_gpio_soc_def_t * SoC level hardware definition.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

Data Type

JBLopen

Embedded Software Insight Chapter 11 GPIO 78
p_bsp_def const void * Board and application-specific definition.
p_name const char * GPIO instance name.

bp_gpio_drv_hndl_t
<gpio/bp_gpio.h>

GPIO driver handle. GPIO driver handle returned by a driver’s create function. The pointer contained in
the handle is private and should not be accessed by calling code. See bp_gpio_drv_create_t fora
generic description of a driver’s create function.

Most GPIO drivers are single instance drivers that handles all the GPIOs of a chip with a single driver
instance to save resources. Those driver can be passed a BP_GPIO_DRV_NULL_HNDL to use the default
instance.

Members

p_hndl void * Private pointer to the driver instance.

bp_gpio_hndl_t
<gpio/bp_gpio.h>

GPIO handle. GPIO handle returned by bp_gpio_create () and used for subsequent access to a
GPIO module instance. The pointer contained in the handle is private and should not be accessed by
calling code.

See bp_gpio_create() for usage details.
Members

p_hndl bp_gpio_inst_t * Private pointer to the GPIO module instance internal data.

bp_gpio_soc_def_t
<gpio/bp_gpio.h>
GPIO module SoC level hardware definition structure.

The GPIO hardware definition structure is used to describe the peripheral at the SoC level. The
structure specifies the driver to be used as well as a driver specific definition structure usually
specifying the location, clock, interrupt and various other parameters required by each GPIO drivers.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 11 GPIO | 79

To be complete, a GPIO hardware instance also requires a board specific portion. Both this structure
and the BSP structures are referenced by a bp_gpio_board_def_t structure to describe a form a
complete GPIO interface definition.

Members
p_drv const bp_gpio_drv_t * Driver associated with this peripheral.
p_drv_def const void * Driver specific hardware definition.

Macro BP_GPIO_HNDL_IS_NULL()

<gpio/bp_gpio.h>
Evaluates if a GPIO handle is NULL.

Prototype BP_GPIO_HNDL_IS_NULL (hndl);
Parameters hndl Handle to be checked.
Expansion true if the handle is NULL, false otherwise.

BP_GPIO_NULL_HNDL

<gpio/bp_gpio.h>
NULL GPIO module handle.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

12C

The 12C module allows access to Inter-Integrated Circuit (12C) compatible peripherals in both master and
slave configurations.

I2C drivers are usually written to minimize the number of interrupts and context switches generated by
I12C operations.

Considering the wide varieties of 12C compatible peripherals, it would be impossible to design a
high-level API that could leverage the unique features of many peripherals. To alleviate this, drivers are
allowed to implement driver-specific functionalities to extend the features of the 12C module. Details of
these features can be found in each driver’s documentation.

In addition to directly accessing an external i2c peripherals, the BASEplatform also includes many boards
component modules and drivers for popular parts such as IO expanders, EEPROMs, sensors and more.

bp_i2c_acquire()
<i2c/bp_i2c.h>

Acquires exclusive access to an 12C interface. Upon a successful call the 12C module instance will be
accessible exclusively from the current thread.

bp_i2c_acquire() has no effect in a bare-metal environment.

Prototype int bp_i2c_acquire (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C 81

Parameters hndl Handle of the 12C module instance to acquire.
timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_addr_1is_10b()
<i2c/bp_i2c.h>

Checks if an 12C address is in the 10-bit 12C address range. By the standard a valid 10-bit 12C address
ranges from 0x78 (120 decimal) to Ox3FB (1019 decimal) inclusively.

Prototype bool bp_i2c_addr_is_10b (uint32_t addr);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters addr Address to validate.
Returned Returns true if the address is a 10-bit address false otherwise.
Values

bp_i2c_addr_is_valid()
<i2c/bp_i2c.h>

Checks the validity of an 12C slave address. Validates that the 12C address addr is valid according to the
12C specifications.

Prototype bool bp_i2c_addr_is_valid (uint32_t addr);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | v v | v
Parameters addr Address to validate.
Returned Returns true if the address is valid false otherwise.
Values

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C | 82

bp_i2c_cfg_get()
<i2c/bp_i2c.h>

Retrieves the current configuration of an 12C interface. Returns the configuration of the I12C interface
through p_cfg. The configuration returned is derived from the hardware registers and reflects the
actual configuration regardless of the last configuration set by bp_i2c_cfg_set().

The clock frequency returned is the actual frequency when known, otherwise the c1k_freq member
of the p_cfg argument is set to 0.

It is driver specific whether the slave address specified in the p_cfg configuration structure is saved or
set when the master field is true. This means that some drivers will return a slave address of O when
calling bp_i2c_cfg_get () when configured as a master. For compatibility application code should
not rely on bp_i2c_cfg_get () returning a valid i2c address when configured as a master.

When bp_i2c_cfg_get () returns with an RTNC_TIMEOUT error, the destination of p_cfg is left
unmodified.

Prototype int bp_i2c_cfg_get (bp_i2c_hndl_t hndl,
bp_i2c_cfg_t* p_cfg,
uint32_t timeout_ms);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox X | v

Parameters hndl Handle of the 12C module instance to query.

p_cfg Pointer to the returned 12C configuration.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_cfg_set()
<i2c/bp_i2c.h>

Configures an 12C interface. Configures the 12C interface using configuration p_cfg. If the interface
was in the opened state, it will transition to the configured state. Otherwise the interface configuration
is updated.

The underlying driver will attempt to configure the closest clock frequency to the specified frequency.
Calling bp_i2c_cfg_get () will return the actual frequency configured.

It is driver specific whether the slave address specified in the p_cfg configuration structure is saved or
set when the master field is true. This means that some drivers will return a slave address of O when

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C | 83

calling bp_i2c_cfg_get () when configured as a master. For compatibility application code should
not rely on bp_i2c_cfg_get () returning a valid i2c address when configured as a master.

When bp_i2c_cfg_set () returns with a RTNC_NOT_SUPPORTED or RTNC_TIMEOUT error, it is
guaranteed that the current configuration is unaffected.

Not all peripherals support both master and slave modes. Attempting to set an unsupported mode will
return RTNC_NOT_SUPPORTED.

Drivers for peripherals that do not support changing the clock speed will ignore the bit_rate
argument. bp_i2c_cfg_get () will return the fixed speed if known.

It is driver specific whether or not an RTNC_NOT_SUPPORTED error is returned on configurations not
supported by the underlying peripheral. Unless specified differently by the driver documentation, the
following holds true.

e A clock speed of O will return an RTNC_FATAL error, unless it has a special meaning for the
hardware.

e Specifying a clock speed outside of the peripheral’s supported range will configure the closest
supported rate.

o Specifying an unsupported mode will return RTNC_NOT_SUPPORTED.

e Drivers for peripherals with a fixed hardware configuration such as soft IPs for FPGAs, will usually
ignore any configuration parameters and return successfully.

Prototype int bp_i2c_cfg_set (bp_i2c_hndl_t hnd1l,
const bp_i2c_cfg_t* p_cfg,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the 12C module instance to configure.
p_cfg 12C configuration to apply.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

Example

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C | 84

bp_i2c_hndl_t 1i2c_hndl;
bp_i2c_cfg_t i2c_cfg;

i2c_cfg.bit_rate = 400000u;
i2c_cfg.master = true;

bp_i2c_cfg_set(i2c_hndl, \&i2c_cfg, TIMEOUT_INF);

bp_i2c_create()
<i2c/bp_i2c.h>

Creates an 12C module instance. The created 12C instance is associated with the 12C peripheral
definition p_def. If successful, a handle to the newly created instance is returned through the p_hnd1
argument. After returning from a successful call to bp_i2c_create() the newly created instance is in
the created state and should subsequently be configured and enabled to be fully functional. See
bp_i2c_cfg_set() and bp_i2c_en() for details.

The 12C definition structure p_def must be unique and can only be associated with a single 12C
instance. Once created, the 12C instance is assigned a name that can be used afterward to retrieve the
interface handle by calling bp_i2c_hnd1l_get (). The assigned name is set from the board definition
structure p_def and must be unique.

An 12C peripheral cannot be opened more than once. If an attempt is made to open the same interface
twice, bp_1i2c_create() returns an RTNC_ALREADY_EXIST error without affecting the already
opened interface.

The board definition p_def passed to bp_i2c_create () must be kept valid for the lifetime of the 12C
module instance.

When bp_i2c_create() returns with either an RTNC_NO_RESOURCE or RTNC_ALREADY_EXIST
error, the destination of p_hnd1 is left unmodified.

Prototype int bp_i2c_create (constbp_i2c_board_def_t* p_def,
bp_i2c_hndl_t * p_hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | x| X | v
Parameters p_def Definition of the 12C peripheral to initialize.

p_hndl Pointer to the newly created 12C module instance.

Returned RTNC_SUCCESS

Errors RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C | 85

Example
extern bp_i2c_board_def_t g_1i2co;
bp_i2c_hndl_t i2c_hndl;

bp_i2c_create(\&g_i2c0, \&i2c_hndl);

bp_i2c_destroy()
<i2c/bp_i2c.h>

Destroys an 12C module instance. When supported, bp_i2c_destroy () will free up all the resources
allocated to the 12C module instance, including the peripheral driver and internal data structures.
Depending on the memory allocation policy of the default memory allocator it may not be possible to
free previously allocated memory, in that case RTNC_NOT_SUPPORTED is returned and the I12C module
instance is left unaffected.

It is not necessary, but strongly recommended, to disable an 12C interface by calling bp_1i2c_dis ()
before attempting to destroy it. This helps ensure that no race condition exists between the instance
destruction and ongoing transfers.

The result of using an 12C module handle after its underlying instance is destroyed is undefined.

Prototype int bp_i2c_destroy (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
vooox] X | v
Parameters hndl Handle of the 12C instance to destroy.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_i2c_d1is()
<i2c/bp_i2c.h>

Disables an 12C interface. bp_i2c_d1is () will wait for the interface to be idle before disabling it.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C | 86

The exact side effect of disabling an interface is driver dependent. In general the peripheral is disabled
at the peripheral level, and, when possible, the module clock is gated.

The result of calling bp_i2c_dis () or any other functions other than bp_i2c_en() or
bp_i2c_reset() on an already disabled interface is undefined. With assertion checking enabled,
some drivers will return RTNC_FATAL when attempting to access a disabled interface. The current
enabled/disabled state of an interface can be queried using bp_1i2c_is_en().

Prototype int bp_i2c_dis (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the 12C module instance to disable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_hndl_get()
<i2c/bp_i2c.h>

Returns the driver handle associated with an I12C module instance. The underlying driver handle will be
returned through p_drv_hnd1l. The driver handle can be used to perform operations with the driver
interface directly or to access driver specific features.

Prototype int bp_i2c_drv_hndl_get (bp_i2c_hndl_t hnd1l,
bp_i2c_drv_hndl_t *x p_drv_hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters hndl Handle of the 12C module instance to query.

p_drv_hndl Pointer to the received I12C driver handle.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Function

JBLopen
Embedded Software Insight Chapter 12 12C 87

bp_i2c_en()
<i2c/bp_i2c.h>

Enables an 12C interface. Enabling an interface in the disabled or configured state will, depending on the
driver, enable the peripheral clock, de-assert reset, if asserted, and enable transmission and reception
through the 12C interface.

Calling bp_i2c_en() on an enabled interface should be without side effect.

Prototype int bp_i2c_en (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the 12C module instance to enable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_flush()
<i2c/bp_i2c.h>

Flushes the transmit and receive paths. Flush the transmit and receive paths of an 12C interface. It is
unspecified whether any data written but not yes transmitted is sent or dropped.

Prototype int bp_i2c_flush (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
e X X v
Parameters hndl Handle of the 12C module instance to flush.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C 88

bp_i2c_hnd1l_get()
<i2c/bp_i2c.h>

Retrieves a previously created 12C instance handle by name. If found, the result is returned through the
p_hnd1l argument, otherwise RTNC_NOT_FOUND is returned and p_hnd1 is left as it was before the call
to bp_i2c_hndl_get ().

The name of an interface is set in the bp_i2c_board_def_t board description passed to
bp_i2c_create().

Prototype int bp_i2c_hndl_get (constchar x p_name,
bp_i2c_hndl_t * p_hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters p_name Name of the I2C instance to retrieve.

p_hndl Pointer to the returned 12C interface handle.

Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND
RTNC_FATAL

bp_i2c_idle_wait()
<i2c/bp_i2c.h>

Waits for an 12C interface to be idle.

Prototype int bp_i2c_idle_wait (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters hndl Handle of the 12C module instance to wait on.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C | 89

bp_i2c_is_en()
<i2c/bp_i2c.h>

Returns the enabled/disabled state of an 12C interface. If the call is successful, the state of the 12C
interface hnd1 through argument p_is_en.

The state of an interface is checked atomically in a non-blocking way. As such bp_1i2c_is_en() can
be called while another operation is in progress without blocking or from an interrupt service routine.

Prototype int bp_i2c_is_en (bp_i2c_hndl_t hndl,
bool * p_is_en);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v
Parameters hndl Handle of the I12C module instance to query.
p_is_en Interface state, true if enabled false otherwise.
Returned RTNC_SUCCESS
Errors RTNC_FATAL
bp_i2c_release()

<i2c/bp_i2c.h>
Releases exclusive access to an 12C interface.

bp_i2c_release() has no effect in a bare-metal environment.

Prototype int bp_i2c_release (bp_i2c_hndl_t hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

x | ox | x| v
Parameters hndl Handle of the 12C module instance to release.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Function

JBLopen
Embedded Software Insight Chapter 12 12C | 90

bp_i2c_reset()
<i2c/bp_i2c.h>

Resets an 12C module instance. Upon a successful call to bp_i2c_reset () the I12C interface is
returned to the created state. Before using the interface again it must be configured and enabled, see
bp_i2c_cfg_set() and bp_i2c_en().

Any asynchronous transfers in progress will be aborted without calling their callback functions.

Prototype int bp_i2c_reset (bp_i2c_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the 12C interface to reset.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_xfer ()
<i2c/bp_i2c.h>

Performs an 12C operation. Transmit or receive through 12C interface according to the p_tf transfer
descriptor. See the bp_i2c_tf_t documentation for details of the individual fields.

The callback member of the p_tf argument, which is only used for asynchronous transfers, should
be set to NULL.

In slave mode the pointee of argument p_tf_Tlen will be the actual number of bytes received in case of
a successful transfer or a receive timeout.

In slave mode RTNC_WANT_READ and RTNC_WANT_WRITE will be returned when the requested
operation, either a transmit or a receive, doesn’t match the operation requested by the 12C master. In
those cases nothing is performed the application should setup a new 12C transfer with the correct
direction.

In master mode the hold_nack member of the transfer description structure can be set to true to hold
the bus after the master operation, allowing for a repeated start at the next operation. Note that the
bus will be held indefinitely if no other master operation is performed with hold_nack set to false. To
prevent contention issues in multi-master operation or possible slave timeout it is recommended to
minimize the delay between master operations with the bus held.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C | 91

The timeout value is the amount of time to wait for the channel to be available. The time spent to
perform the transfer is not counted to consider a timeout condition. Drivers that support querying the
bit rate of the interface in master mode can return RTNC_FATAL in case the transfer operation is taking
longer than expected.

Prototype int bp_i2c_xfer (bp_i2c_hndl_t hndl,
bp_i2c_tf_tx p_tf,
size_t * p_tf_len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the 12C module instance to use for the transfer.
p_tf Pointer to an bp_i2c_tf_t structure describing the transfer to per-
form.
p_tf_len Amount of data actually transferred.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_WANT_READ
RTNC_WANT_WRITE
RTNC_IO_ERR
RTNC_FATAL

Example

bp_i2c_tf_t tf;
size_t tf_len

tf.p_buf = p_buf;
tf.buf_len = Ou;
tf.dir = BP_I2C_DIR_RX;
tf.slave_addr = 0xA;
tf.hold_nack = false;
tf.callback = NULL;

bp_i2c_xfer(i2c_hndl, \&tf, \&tf_len, TIMEOUT_INF);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C | 92

bp_i2c_xfer_async()
<i2c/bp_i2c.h>

Transfers data asynchronously. Performs an asynchronous transfer operation according to the
parameters of the p_tf argument, see the bp_i2c_tf_t documentation for an explanation of the
transfer parameters. Upon successfully starting a transfer, the function returns immediately. The
callback specified in the p_tf structure will be called when the transfer is finished. If no callback is
specified a fire and forget transfer will be performed, where the entire operation will be executed in the
background. Care should be taken when using such transfers as it's not possible for the application to
know if the transfer succeeded.

The timeout argument timeout_ms specifies the amount of time to wait for the channel to be
available. The timeout value has no impact on the asynchronous transfer operation once started.

In master mode the hold_nack member of the transfer description structure can be set to true to hold
the bus after the master operation, allowing for a repeated start at the next operation. Note that the
bus will be held indefinitely if no other master operation is performed with hold_nack set to false. To
prevent contention issues in multi-master operation or possible slave timeout it is recommended to
minimize the delay between master operations with the bus held.

When bp_i2c_xfer_async() returns with an RTNC_TIMEOUT, error the transfer is not started and
the callback function specified in p_tf won't be called.

The structure referenced by p_tf must be valid for the entire asynchronous transfer operation and may
be accessed by the I2C driver. Upon returning, the original state of the transfer descriptor will be
preserved. p_tf will be passed verbatim to the callback and may be modified within the user callback
to perform an additional transfer from the callback.

The p_ctxt member of the p_tf transfer descriptor can be used to pass user context information to
the callback.

Prototype int bp_i2c_xfer_async (bp_i2c_hndl_t hndl,
bp_i2c_tf_tx p_tf,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the 12C module instance to use for the transfer.
p_tf Transfer parameters.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT

RTNC_FATAL
Example

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C 93

bp_i2c_tf_t tf;

tf.p_buf = p_buf;
tf.buf_len = Ou;

tf.dir = BP_I2C_DIR_RX;
tf.slave_addr = 0xA;
tf.hold_nack = false;
tf.callback = cb_func;

bp_i2c_xfer_async(i2c_hndl, \&tf, TIMEOUT_INF);

bp_i2c_xfer_async_abort()
<i2c/bp_i2c.h>

Aborts an asynchronous transfer. Aborts any running asynchronous transfer operation. The number of
bytes already transmitted will be returned through p_tf_Tlen if it's not NULL.

In case of a successful abort the transfer callback function of the aborted operation won't be called. It is,
however, possible for the transfer to finish just before being aborted in which case
bp_i2c_xfer_async_abort () will return with RTNC_SUCCESS.

When aborting a write operation p_tf_1len may not reflect the actual number of bytes successfully
written through the 12C bus.

In case no asynchronous transfer operation is in progress bp_i2c_xfer_async_abort () will return
RTNC_SUCCESS and the number of bytes transmitted will be O.

Prototype int bp_i2c_xfer_async_abort (bp_i2c_hndl_t hndl,
size_t * p_tf_len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
vooox] P | v
Parameters hndl Handle of the 12C module instance to abort.
p_tf_len Amount of data transferred.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

Data Type

JBLopen
Embedded Software Insight Chapter 12 12C | 94

bp_i2c_action_t
<i2c/bp_i2c.h>

Asynchronous IO return action. These are the return value possible to an I12C asynchronous 10 callback
instructing the driver on the action to be performed. See bp_i2c_xfer_async() and
bp_i2c_async_cb_t for usage details.

Values

BP_I2C_ACTION_FINISH Finish normally.

BP_I2C_ACTION_RESTART Restart a transfer with the data of the current transfer description
structure.

bp_i2c_dir_t
<i2c/bp_i2c.h>
12C direction.

To be used in the bp_i2c_tf_t I12C operation structure. See bp_i2c_xfer () and
bp_i2c_xfer_async() for details.

Values
BP_I2C_DIR_TX 12C transmit/output.
BP_I2C_DIR_RX I12C receive/input.

bp_i2c_async_cbh_t
<i2c/bp_i2c.h>

Asynchronous 1O callback. Callback function pointer type to be used with non-blocking asynchronous
transfers.

When an asynchronous transfer is finished, the callback will be called if set. The status argument will
be one of the following, indicating the result of the transfer:

RTNC_SUCCESS The transfer finished normally.

RTNC_TIO_ERR An I/O error occurred.

RTNC_WANT_READ Slave write requested but master indicated a read.
RTNC_WANT_WRITE Slave read requested but master indicated a write.
RTNC_FATAL A fatal error was detected.

Two actions are possible when returning.

e BP_TI2C_ACTION_FINISH Finish the transfer normally.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

JBLopen
Embedded Software Insight Chapter 12 12C 95

e BP_I2C_ACTION_RESTART Restart the transfer operation with the data in the p_tf transfer
description structure.

The transfer description structure is the same that was passed to the initial call to
bp_i2c_xfer_async(). It can be modified prior to returning BP_SPI_ACTION_RESTART to restart
a transfer immediately from the callback using the updated transfer descriptor.

See bp_1i2c_xfer_async() for usage details.

Prototype bp_i2c_action_t bp_i2c_async_cb_t (1int status,
size_t tf_len,
bp_i2c_tf_tx p_tf);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters status Status of the asynchronous operation.
tf_len Amount of bytes actually transferred in case of timeout or error.
p_tf Pointer to the current transfer.
Returned Return value of type bp_1i2c_action_t to signal the desired operation (terminate or
Values restart).

bp_i2c_board_def_t
<i2c/bp_i2c.h>

I12C board-level hardware definition. Complete definition of an 12C interface, including the name, BSP as
well as the SoC level definition structure of type bp_i2c_soc_def_t providing the driver and driver
specific parameters. The overall definition of an 12C interface should be unique, including the name, for
each 12C module instance to prevent conflicts.

BSP definitions are driver specific and usually not required, when that is the case p_bsp_def should be
set to NULL. See the driver's documentation for details.

See bp_i2c_create() for usage details.

Members
p_soc_def const bp_i2c_soc_def_t * SoC-level hardware definition.
p_bsp_def void * Board and application specific definition.

p_name const char * I12C peripheral name.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

Data Type

Data Type

JBLopen
Embedded Software Insight Chapter 12 12C | 96

bp_i2c_cfg_t
<i2c/bp_i2c.h>
I2C configuration structure. Used to set or return the configuration of an I12C interface.
See bp_i2c_cfg_set() and bp_i2c_cfg_get () for usage details.
Members
bit_rate uint32_t Bit rate.
slave_addr uintle_t Slave address, ignored for master configuration.

master bool true for master mode false for slave.

bp_i2c_drv_hndl_t
<i2c/bp_i2c.h>

I12C driver data handle. Pointer to driver private data. The pointer contained in the handle is private and
should not be accessed by calling code.

See bp_i2c_driver_create_t and the driver documentation for details.
Members

p_hndl void * Pointer to the internal 12C driver’s data.

bp_i2c_hndl1_t
<i2c/bp_i2c.h>

I2C handle. 12C handle returned by bp_1i2c_create (). The pointer contained in the handle is private
and should not be accessed by calling code.

Members

p_hndl bp_i2c_inst_t * Pointer to the 12C module internal instance data.

bp_i2c_soc_def_t
<i2c/bp_i2c.h>

I2C module SoC-level hardware definition structure.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Macro

JBLopen
Embedded Software Insight Chapter 12 12C | 97

The 12C hardware definition structure is used to describe the peripheral at the SoC level. The structure
specifies the driver to be used as well as driver specific definition structure usually specifying the
location, clock, interrupt and various other parameters required by each 12C drivers.

To be complete, an 12C hardware instance also requires a board specific portion. Both this structure and
the BSP structures are referenced by a bp_1i2c_board_def_t structure to describe a form a complete
12C interface definition.

Members
p_drv const bp_i2c_drv_t * Driver associated with this peripheral.
p_drv_def const void * Driver specific definition structure.

bp_i2c_tf_t
<i2c/bp_i2c.h>

I2C operation definition structure. Used to describe an 12C operation to perform. See bp_i2c_xfer ()
and bp_i2c_xfer_async () for usage details.

Members

dir bp_i2c_dir_t Direction.

hold_nack bool Set to true to hold the bus in master mode or to nack
after the end of a transfer in slave mode.

p_buf void * Point to data buffer to transmit or receive.

slave_addr uintle_t Slave address.

buf_len uint32_t Length of data to transmit or receive in bytes.

callback bp_i2c_async_ch_t Async transfer callback. Should be set to NULL for
non-async transfers.

p_ctxt void * Optional user context pointer passed to the asyn-

chronous callback.

BP_I2C_10B_SLV_ADDR_MASK
<i2c/bp_i2c.h>

10-bit 12C address mask.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 12 12C | 98

Macro BP_I2C_HNDL_IS_NULL()
<i2c/bp_i2c.h>

Evaluates if an 12C module handle is NULL.

Prototype BP_I2C_HNDL_IS_NULL (hndl);
Parameters hndl Handle to be checked.
Expansion true if the handle is NULL, false otherwise.

Macro BP_I2C_MAX_10B_SLV_ADDR
<i2c/bp_i2c.h>

Highest 10-bit I12C address.

Macro BP_12C_MAX_SLV_ADDR
<i2c/bp_i2c.h>

Highest 7-bit 12C address.

Macro BP_T2C_MIN_10B_SLV_ADDR
<i2c/bp_i2c.h>

Lowest 10-bit I12C address.

Macro BP_T2C_NULL_HNDL
<i2c/bp_i2c.h>
NULL I12C handle.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Macro

JBLopen
Embedded Software Insight

BP_I2C_SLV_ADDR_MASK
<i2c/bp_i2c.h>

7-bit 12C address mask.

BASEplatform APl Reference Manual

Chapter 12 12C | 99

www.jblopen.com

https://www.jblopen.com

Chapter

SPI

The SPI module allows transmission and reception through Serial Peripheral Interface(SPI) compatible
peripherals along with optional control of the slave select lines. Operation can either be as an SPI
master or slave if supported by the peripheral. The API also supports simultaneous transmission and
reception in both the master and slave configuration.

The exact handling of the slave select line performed by calling bp_spi_slave_sel() and
bp_spi_slave_desel() is driver and platform specific. The mapping between the slave select id and
a physical slave select pin is also platform specific. Additional details are available in the driver’s
documentation.

Considering the wide varieties of SPI compatible peripherals, it would be impossible to design a
high-level API that could leverage the unique features of many peripherals. To alleviate this, drivers are
allowed to implement driver-specific functionalities to extend the features of the SPI module. Details of
these features can be found in each driver’s documentation.

bp_spi_cfg_get()
<spi/bp_spi.h>

Retrieves the current configuration of an SPI interface. If successful, the SPI configuration is returned
through p_cfg. The configuration returned is derived from the hardware registers and reflects the
actual configuration regardless of the last configuration set by bp_spi_cfg_set ().

The clock frequency returned is the actual frequency when known, otherwise the max_clk_speed
member of p_cfgis set to 0.

When bp_spi_cfg_get () returns with an RTNC_TIMEOUT error, the destination of p_cfg is left
unmodified.

Prototype int bp_spi_cfg_get (bp_spi_hndl_t hndl,
bp_spi_cfg_t* p_cfg,
uint32_t timeout_ms);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 13 SPI 101
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox X | v
Parameters hndl Handle of the SPI module instance to query.
p_cfg Pointer to the returned SPI configuration.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_spi_cfg_set()
<spi/bp_spi.h>

Configures an SPI interface. The SPI interface configuration is set from the p_cfg argument. If the
interface was in the created state, it will transition to the configured state and must be enabled using
'bp_spi_en() before being used. Otherwise the interface configuration is updated.

The underlying driver will attempt to configure the closest clock frequency to the specified frequency.
Calling bp_spi_cfg_get () will return the actual frequency configured.

When bp_spi_cfg_set () returns with an RTNC_NOT_SUPPORTED or RTNC_TIMEOUT error, it is
guaranteed that the current configuration is unaffected.

Not all peripherals and drivers support both master and slave mode. Attempting to set an unsupported
mode will return RTNC_NOT_SUPPORTED.

Drivers for peripherals that do not support changing the clock speed will ignore the max_clk_speed
argument. bp_spi_cfg_get () will return the fixed speed if known.

It is driver specific whether or not an RTNC_NOT_SUPPORTED error is returned on configurations not
supported by the underlying peripheral. Unless specified differently by the driver documentation, the
following holds true.

e A clock speed of O will return an RTNC_FATAL error unless it has a special meaning for the
hardware.

e Specifying a clock speed outside of the peripheral’s supported range will configure the closest
supported rate.

e Specifying an unsupported mode will return RTNC_NOT_SUPPORTED.

e Drivers for peripherals with a fixed hardware configuration such as soft IPs for FPGAs, will usually
ignore any configuration parameters and return successfully.

Prototype int bp_spi_cfg_set (bp_spi_hndl_t hndl,
const bp_spi_cfg_t* p_cfg,
uint32_t timeout_ms);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 13 SPI 102
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox X | v
Parameters hndl Handle of the SPI module instance to configure.
p_cfg SPI configuration.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

Example

bp_spi_hndl_t spi_hndl;
bp_spi_cfg_t spi_cfg;

spi_cfg.clk_phase = 0Qu;
spi_cfg.clk_polarity = 1lu;
spi_cfg.master = 1lu;
spi_cfg.max_clk_speed = OQu;

bp_spi_cfg_set(spi_hndl, \&spi_cfg, TIMEOUT_INF);

bp_spi_create()
<spi/bp_spi.h>

Creates an SPI module instance. The created SPI instance is associated with the SPI peripheral
definition p_def. If successful, a handle to the newly created instance is returned through the p_hnd1
argument. After returning from a successful call to bp_spi_create() the newly created instance is in
the created state and should subsequently be configured and enabled to be fully functional. See
bp_spi_cfg_set() and bp_spi_en() for details.

The SPI definition structure p_def must be unique and can only be associated with a single UART
instance. Once created, the SPI instance is assigned a name that can be used afterward to retrieve the
interface handle by calling bp_spi_hnd1l_get (). The assigned name is set from the board definition
structure p_def and must be unique.

An SPI peripheral cannot be opened more than once. If an attempt is made to open the same interface
twice, bp_spi_create() returns an RTNC_ALREADY_EXIST error without affecting the already
opened interface.

The board definition p_def passed to bp_spi_create () must be kept valid for the lifetime of the SPI
module instance.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 13 SPI 103

When bp_spi_create() returns with either an RTNC_NO_RESOURCE or RTNC_ALREADY_EXIST
error, the destination of p_hnd1 is left in an undefined state.

Prototype int bp_spi_create (constbp_spi_board_def_tx* p_def,
bp_spi_hndl_t * p_hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | ox X | v

Parameters p_def Definition of the SPI peripheral.

p_hndl Pointer to the created SPI module instance.
Returned RTNC_SUCCESS
Errors RTNC_ALREADY_EXIST

RTNC_NO_RESOURCE

RTNC_FATAL
Example

extern bp_spi_board_def_t g_spi0;
bp_spi_hndl_t spi_hndl;

bp_spi_create(\&g_spi®, \&spi_hndl);

bp_spi_destroy()
<spi/bp_spi.h>

Destroys an SPI module instance. When supported, bp_spi_destroy () will free up all the resources
allocated to the SPI module instance, including the peripheral driver and internal data structures.
Depending on the memory allocation policy of the default memory allocator it may not be possible to
free previously allocated memory, in that case RTNC_NOT_SUPPORTED is returned and the SPI module
instance is left unaffected.

It is not necessary, but strongly recommended, to disable an SPI interface by calling bp_spi_dis()
before attempting to destroy it. This helps ensure that no race condition exists between the instance
destruction and ongoing transfers.

The result of using a UART module handle after its underlying instance is destroyed is undefined.

Prototype int bp_spi_destroy (bp_spi_hndl_t hndl,
uint32_t timeout_ms);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 13 SPI 104
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

ool ox X | v
Parameters hndl Handle of the SPI module instance to destroy.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_spi_dis()
<spi/bp_spi.h>
Disables an SPI interface. bp_spi_dis () will wait for the interface to be idle before disabling it.

The exact side effects of disabling an interface is driver dependent. In general the peripheral is disabled
at the peripheral level, and, when possible, the module clock is gated.

The result of calling bp_spi_dis () or any other functions other than bp_spi_en() or
bp_spi_reset() on an already disabled interface is undefined. With assertion checking enabled,
some drivers will return RTNC_FATAL when attempting to access a disabled interface. The current
enabled/disabled state of an interface can be queried using bp_spi_is_en().

Prototype int bp_spi_dis (bp_spi_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the SPI module instance to disable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Function

JBLopen
Embedded Software Insight Chapter 13 SPI 105

bp_spi_drv_hndl_get()
<spi/bp_spi.h>

Prototype int bp_spi_drv_hndl_get (bp_spi_hndl_t hndl,
bp_spi_drv_hndl_t x p_drv_hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters hndl Handle of the SPI module instance to query.

p_drv_hndl Pointer to the SPI driver handle.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_spi_en()
<spi/bp_spi.h>

Enables an SPI interface. Enabling an SPI module instance in the disabled or configured state will,
depending on the driver, enable the peripheral clock, de-assert reset, if asserted, and enable
transmission and reception through the SPI peripheral.

Calling bp_spi_en() on an enabled SPI instance should be without side effect.

Prototype int bp_spi_en (bp_spi_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox] P | v
Parameters hnd1l Handle of the SPI interface to enable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Function

JBLopen
Embedded Software Insight Chapter 13 SPI 106

bp_spi_flush()
<spi/bp_spi.h>

Flushes the transmit and receive paths. Flush the transmit and receive paths of an SPI interface. It is
unspecified whether any data written but not yet transmitted is sent or dropped. Data held in the
receive FIFO will be discarded.

Prototype int bp_spi_flush (bp_spi_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the SPI module instance to flush.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_spi_hndl_get()
<spi/bp_spi.h>

Retrieves a previously created SPI instance handle by name. If found, the result is returned through the
p_hnd1l argument, otherwise RTNC_NOT_FOUND is returned and p_hnd1 is left as it was before the call
to bp_uart_hndl_get().

The name of an instance is set in the bp_uart_board_def_t board definition passed to
bp_spi_create().

Prototype int bp_spi_hndl_get (constchar * p_name,
bp_spi_hndl_t* p_hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters p_name Name of the SPI instance to retrieve.

p_hndl Pointer to the SPI interface handle.

Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Function

JBLopen
Embedded Software Insight Chapter 13 SPI 107

bp_spi_idle_wait()
<spi/bp_spi.h>

Waits for an SPI interface to be idle. bp_spi_idle_wait () will wait for the transfer logic to be idle in
master mode and for any transfer operation to be complete in slave mode.

Prototype int bp_spi_idle_wait (bp_spi_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the SPI module instance to wait on.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_spi_is_en()
<spi/bp_spi.h>

Returns the enabled/disabled state of an SPI interface. If the call is successful, the state of the SPI
interface is returned through the argument p_is_en.

The state of an interface is checked atomically in a non-blocking way. As such, bp_spi_is_en() can
be called while another operation is in progress without blocking or from an interrupt service routine.

Prototype int bp_spi_is_en (bp_spi_hndl_t hndl,
bool p_is_en);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox] X | v
Parameters hndl Handle of the SPI module instance to query.

p_is_en Returned interface state, true if enabled false otherwise.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 13 SPI 108

bp_spi_reset()
<spi/bp_spi.h>

Resets an SPI module instance. Upon a successful call to bp_spi_reset () the SPI interface is left in
the created state, equivalent to the state a newly created instance. Before using the instance again, it
must be reconfigured and enabled, see bp_spi_cfg_set() and bp_spi_en().

Any asynchronous transfers in progress will be aborted without calling their callback functions.

Prototype int bp_spi_reset (bp_spi_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the SPI module instance to reset.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_spi_slave_desel()
<spi/bp_spi.h>

Deselects a selected SPI slave. Deselect any selected slave select line of SPI interface hnd1 and release
exclusive control of the SPI interface. The SPI driver will always wait for the current transfer, if any, to
be finished before deasserting the slave select line.

When hosted by an RTOS supporting mutexes, only the task that called bp_spi_slave_sel() is
allowed to call bp_spi_slave_desel().

bp_spi_slave_desel() should always be called before selecting another slave to properly release
the mutex.

Prototype int bp_spi_slave_desel (bp_spi_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the SPI module instance to use.

timeout_ms Timeout value in milliseconds.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 13 SPI 109
Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT

RTNC_FATAL

bp_spi_slave_sel()
<spi/bp_spi.h>

Selects a specific SPI slave. Select slave interface ss_-id of SPI interface hnd1 and take exclusive
control of an SPI interface. When hosted on an RTOS, calling bp_spi_slave_sel () will acquire a
mutex to ensure no other tasks can access the bus. bp_spi_slave_desel () must be called to
release the bus.

Whether or not the slave select line is actually asserted after calling bp_spi_slave_se'l () is driver
specific. By default, the slave select line will be asserted by calling bp_spi_slave_sel() and will be
kept asserted until bp_spi_slave_desel() is called. Some drivers may support additional modes of
operation where the slave select behaves differently, see the driver documentation for details.

The exact mapping of slave select id is specific to the peripheral driver and may depend on driver
specific configurations, see the driver documentation for details.

It is driver specified whether RTNC_NOT_SUPPORTED or RTNC_FATAL is returned when an out of range
ss_1d is specified for the current peripheral. For maximum flexibility, drivers for peripherals that do not
support any slave select lines will ignore any selected slave select and return RTNC_SUCCESS.

Prototype int bp_spi_slave_sel (bp_spi_hndl_t hndl,
uint32_t ss_id,
uint32_t timeout_ms);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox X | v

Parameters hndl Handle of the SPI module instance to use.

ss_1id Numeric id of the slave select line to assert.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 13 SPI 110

bp_spi_xfer ()
<spi/bp_spi.h>

Performs an SPI operation. Transmit and/or receive through SPI interface using the transfer parameters
p_tf.

The callback argument of p_tf, which is only used for asynchronous transfers, should be set to NULL.

In master mode, since the SPI protocol operates as a shift register the pointee of p_tf_len will always
match the configured length unless an error happens. On error the value of p_tf_1len is undefined.

In slave mode the number of bytes returned through p_tf_Tlen will be the actual number of bytes
transferred in case of a successful transfer or a receive timeout.

The timeout value is the amount of time to wait for the channel to be available. The time spent to
perform the transfer is not counted to consider a timeout condition. Drivers that support querying the
bit rate of the interface in master mode can return RTNC_FATAL in case the transfer operation is taking
longer than expected.

Prototype int bp_spi_xfer (bp_spi_hndl_t hndl,
bp_spi_tf_tx p_tf,
size_t * p_tf_len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the SPI module instance to use.
p_tf Pointer to an bp_spi_tf_t structure describing the transfer to per-
form.
p_tf_len Amount of data actually transferred.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL
Example

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 13 SPI 111

bp_spi_tf_t tf;
size_t rx_len

tf.p_tx_buf = p_tx_buf;
tf.p_rx_buf = p_rx_buf;
tf.len = 100u;
tf.callback = NULL;

bp_spi_xfer(spi_hndl, \&tf, \&rx_len, timeout_ms);

bp_spi_xfer_async()
<spi/bp_spi.h>

Transfers data asynchronously. Performs an asynchronous transfer operation according to the
parameters of the p_tf argument, see the bp_spi_tf_t structure documentation for an explanation
of the transfer parameters. Upon successfully starting a transfer, the function returns immediately. The
callback specified in the p_tf structure will be called when the transfer is finished. If no callback is
specified a fire and forget transfer will be performed, where the entire operation will be executed in the
background. Care should be taken when using such transfers as it's not possible for the application to
know if the transfer succeeded.

The timeout argument timeout_ms specifies the amount of time to wait for the channel to be
available. The timeout value has no impact on the asynchronous transfer operation once started.

When bp_spi_xfer_async() returns with an RTNC_TIMEOUT error, the transfer is not started and
the callback function specified in p_tf won't be called.

The structure referenced by p_tf must be valid for the entire asynchronous transfer operation and may
be accessed by the SPI driver. Upon returning, the original state of the transfer will be preserved. p_tf
will be passed verbatim to the callback and may be modified within the user callback to perform an
additional transfer from the callback.

The p_ctxt member of the p_tf transfer descriptor can be used to pass user context information to
the callback.

Prototype int bp_spi_xfer_async (bp_spi_hndl_t hndl,
bp_spi_tf_t*x p_tf,
uint32_t timeout_ms);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

v X X v
Parameters hndl Handle of the SPI module instance to use for the asynchronous trans-
fer.
p_tf Transfer parameters.

timeout_ms Timeout value in milliseconds.

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 13 SPI 112
Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT

RTNC_FATAL

bp_sp'i_xfer_async_abort()
<spi/bp_spi.h>

Aborts an asynchronous transfer. Aborts any running asynchronous transfer operation. The number of
bytes already transmitted and received will be returned through p_tx_1len and p_rx_1len if they are
not NULL.

In case of a successful abort the transfer callback function of the aborted operation won't be called. It is
however, possible for the transfer to finish just before being aborted in which case
bp_spi_xfer_async_abort() will return with RTNC_SUCCESS.

Aborting a transfer will clear the transmit and receive FIFOs if any, which can lead to data loss.

Prototype int bp_spi_xfer_async_abort (bp_spi_hndl_t hndl,
size_t * p_tx_len,
size_t * p_rx_Llen,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox x | v
Parameters hndl Handle of the interface to abort.
p_tx_len Pointer to the amount of data already transferred.
p_rx_len Pointer to the amount of data already received.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_spi_action_t
<spi/bp_spi.h>

Asynchronous IO return action. These are the return value possible to an SPI asynchronous 10 callback
instructing the driver on the action to be performed. See bp_spi_async_cb_t and
bp_spi_xfer_async() for details.

Values

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

JBLopen
Embedded Software Insight Chapter 13 SPI 113

BP_SPI_ACTION_FINISH Finish normally.

BP_SPI_ACTION_RESTART Restart a transfer with the data of the current transfer description
structure.

bp_spi_async_cb_t
<spi/bp_spi.h>

Asynchronous 10O callback function pointer. Callback function pointer type to be used with non-blocking
asynchronous transfers.

When an asynchronous transfer is finished, the callback will be called, if set. The status argument will
be one of the following, indicating the result of the transfer:

e RTNC_SUCCESS The transfer is finished normally.

e RTNC_IO_ERR An I/O error occurred.

e RTNC_FATAL A fatal error was detected.

Two actions are possible when returning.

e BP_SPI_ACTION_FINISH Finish the transfer normally.

e BP_SPI_ACTION_RESTART Restart the transfer operation with the data in the p_tf transfer
description structure.

The transfer descriptor structure is the same that was passed to the initial call to
bp_spi_xfer_async(). It can be modified prior to returning BP_SPI_ACTION_RESTART to restart
a transfer immediately from the callback using the updated transfer descriptor.

See bp_spi_xfer_async() for usage details.

Prototype bp_spi_action_t bp_spi_async_cb_t (1int status,
size_t tf_len,
bp_spi_tf_t* p_tf);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v ox X | v
Parameters status Status of the asynchronous operation.
tf_len Amount of bytes actually transferred in case of timeout or error.
p_tf Pointer to the current transfer.
Returned Return value of type bp_spi_action_t to signal the desired operation (terminate or
Values restart).

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

Data Type

JBLopen
Embedded Software Insight Chapter 13 SPI 114

bp_spi_board_def_t
<spi/bp_spi.h>

SPI board-level hardware definition. Complete definition of an SPI interface, including the name, BSP as
well as the SoC level definition structure of type bp_spi_soc_def_t providing the driver and driver
specific parameters. The overall definition of a SPI interface should be unique, including the name, for
each SPI module instance to prevent conflicts.

BSP definitions are driver specific and usually not required, when that is the case p_bsp_def should be
set to NULL. See the driver’'s documentation for details.

See bp_spi_create() for usage details.
Members
p_soc_def const bp_spi_soc_def_t * SoC level definition.
p_bsp_def const void * Board and application specific definition.

p_name const char x SPI peripheral name.

bp_spi_cfg_t
<spi/bp_spi.h>
SPI protocol configuration structure. Used to set or return the configuration of an SPI interface.

See bp_spi_cfg_set() and bp_spi_cfg_get() for usage details.

Members
bit_rate uint32_t Bit rate in Hertz.
clk_phase uint32_t Clock phase 1 or O.

clk_polarity uint32_t Clock polarity 1 or O.

ss_1id uint32_t Slave select id to configure. Only used on controllers that sup-
ports multiple different SPI configuration in hardware.

master bool Set to true for master mode false for slave.

bp_spi_drv_hndl_t
<spi/bp_spi.h>

SPI driver handle. Pointer to driver private data. The pointer contained in the handle is private and
should not be accessed by calling code.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

Data Type

JBLopen
Embedded Software Insight Chapter 13 SPI 115

Members

p_hndl void * Pointer to the SPI driver internal data.

bp_spi_hndl_t
<spi/bp_spi.h>

SPI handle. SPI handle returned by bp_spi_create(). The pointer contained in the handle is private
and should not be accessed by calling code.

Members

p_hndl bp_spi_inst_t * Pointer to the SPI internal instance data.

bp_spi_soc_def_t
<spi/bp_spi.h>
SPI hardware definition structure.

The SPI hardware definition structure is used to describe the peripheral at the SoC level. It specifies the
driver to be used as well as the location, either as an index or more often a base address.

To be complete a SPI hardware instance also requires a board specific portion. Both this structure and
the BSP structures are merged into a bp_spi_board_def_t structure to describe a complete SPI
interface instance.

Members
p_drv const bp_spi_drv_t * Driver associated with this peripheral.
p_drv_def const void * Driver specific definition.

bp_spi_tf_t

<spi/bp_spi.h>

SPI transfer setup structure. Used by the transfer API and the drivers to describe an SPI transfer.
See bp_spi_xfer () and bp_spi_xfer_async() for usage details.

Members

p_tx_buf const void * Pointer to the buffer to transmit.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 13 SPI 116
p_rx_buf void * Memory location of the buffer that will contain the re-
ceived data.
len size_t Length of the data to receive and/or transmit.

callback bp_spi_async_cb_t Async transfer callback. Should be set to NULL for non-
async transfers.

p_ctxt void * Optional user context pointer passed to the asyn-
chronous callback.

BP_SPI_HNDL_IS_NULL()
<spi/bp_spi.h>

Evaluates if an SPI module handle is NULL.

Prototype BP_SPI_HNDL_IS_NULL (hndl);
Parameters hndl Handle to be checked.
Expansion true if the handle is NULL, false otherwise.

BP_SPI_NULL_HNDL
<spi/bp_spi.h>

NULL SPI module handle.

BP_SPI_SS_NONE
<spi/bp_spi.h>

Special slave select value that represents no specific slave. See bp_spi_slave_sel () for usage
details.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

UART

The UART module is used to interface with Universal Asynchronous Receiver-Transmitter and other
similar serial interface peripherals. UART peripherals are usually comprised of two independent receive
and transmit interfaces. To allow for maximum flexibility the UART module is designed to permit
concurrent access to both the transmit and receive channel in a thread safe manner without blocking
each other.

Some API functions that act on the entire UART peripheral state, such as bp_uart_cfg_set() and
bp_uart_dis () and many others will need to lock both the transmit and receive paths to prevent any
possible race conditions. The inner locking is designed to prevent deadlocks from occurring.

Considering the wide varieties of UART and UART-like peripherals, it would be impossible to design a
high-level API that could leverage the unique features of many peripherals. To alleviate this, drivers are
allowed to implement driver-specific functionalities to extend the features of the UART module. Details
of these features can be found in each driver's documentation.

bp_uart_acquire()
<uart/bp_uart.h>

Acquires exclusive access to a UART module instance. Upon a successful call, the UART instance will be
accessible exclusively from the current thread.

bp_uart_acquire() has no effect in a bare-metal environment.

Prototype int bp_uart_acquire (bp_uart_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 14 UART | 118

Parameters hndl Handle of the UART module instance to acquire.
timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_cfg_get()
<uart/bp_uart.h>

Retrieves the current configuration of a UART interface. If successful, the UART configuration is
returned through p_cfg. The configuration returned is derived from the hardware registers and reflects
the actual configuration regardless of the last configuration set by bp_uart_cfg_set().

The baud rate returned is the actual baud rate when known, otherwise the baud_rate member of
p_cfgissettoO.

When bp_uart_cfg_get () returns with an RTNC_TIMEOUT error, the destination of p_cfg is left
unmodified.

Prototype int bp_uart_cfg_get (bp_uart_hndl_t hndl,
bp_uart_cfg_t* p_cfg,
uint32_t timeout_ms);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox X | v

Parameters hndl Handle of the UART module instance to query.

p_cfg Pointer to the UART configuration.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_cfg_set()
<uart/bp_uart.h>

Configures a UART interface. The UART interface configuration is set from the p_cfg argument. If the
interface was in the created state, it will transition to the configured state and must be enabled using
bp_uart_en() before being used. Otherwise the interface configuration is updated.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 14 UART | 119

The underlying driver will attempt to configure the closest baud rate to the specified baud rate. Calling
bp_uart_cfg_get () will return the actual baud rate configured.

When bp_uart_cfg_set() returns with an RTNC_NOT_SUPPORTED or RTNC_TIMEOUT error, it is
guaranteed that the current configuration is unaffected.

It is driver specific whether or not an RTNC_NOT_SUPPORTED error is returned on configurations not
supported by the underlying peripheral. Unless specified differently by the driver documentation, the
following holds true.

o A baud rate of O will return an RTNC_FATAL error unless it has a special meaning for the hardware.

e Specifying a baud rate outside of the peripheral’s supported range will configure the closest
supported rate.

e Specifying an unsupported parity will return RTNC_NOT_SUPPORTED.

e The configuration for one and a half and two stop bits can be used interchangeably by the driver if
one of them is not supported by the hardware.

e |n case both one and one and a half stop bits are unsupported, RTNC_NOT_SUPPORTED is
returned if either one is specified.

o Drivers for peripherals with a fixed hardware configuration such as soft IPs for FPGAs, or virtual
UART interfaces will usually ignore any configuration parameters and return successfully.

Prototype int bp_uart_cfg_set (bp_uart_hndl_t hnd1l,
const bp_uart_cfg_t x p_cfg,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] X | v
Parameters hndl Handle of the UART module instance to configure.
p_cfg UART configuration to apply.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

Example

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 14 UART | 120

bp_uart_hndl_t uart_hndl;
bp_uart_cfg_t uart_cfg;

bp_uart_cfg.baud_rate = 115200u;
bp_uart_cfg.parity = UART_PARITY_NONE;
bp_uart_cfg.stop_bits = UART_STOP_BITS_1;

bp_uart_cfg_set(uart_hndl, \&uart_cfg, TIMEOUT_INF);

bp_uart_create()
<uart/bp_uart.h>

Creates a UART module instance. The created UART instance is associated with the UART peripheral
definition p_def. If successful, a handle to the newly created instance is returned through the p_hnd1
argument. After returning from a successful call to bp_uart_create() the newly created instance is
in the created state and should subsequently be configured and enabled to be fully functional. See
bp_uart_cfg_set() and bp_uart_en() for details.

The UART definition structure p_def must be unique and can only be associated with a single UART
instance. Once created, the UART instance is assigned a name that can be used afterward to retrieve
the interface handle by calling bp_uart_hndl_get (). The assigned name is set from the board
definition structure p_def and must be unique.

A UART peripheral cannot be opened more than once. If an attempt is made to open the same interface
twice, bp_uart_create() returns an RTNC_ALREADY_EXIST error without affecting the already
opened interface.

The board definition p_def passed to bp_uart_create () must be kept valid for the lifetime of the
UART module instance.

When bp_uart_create() returns with either an RTNC_NO_RESOURCE or RTNC_ALREADY_EXIST
error, the destination of p_hnd1 is left in an undefined state.

Prototype int bp_uart_create (constbp_uart_board_def_t * p_def,
bp_uart_hndl_t * p_hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | ox] x | v

Parameters p_def Definition of the UART peripheral.
p_hndl Pointer to the created UART module instance.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 14 UART | 121
Returned RTNC_SUCCESS
Errors RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL
Example

extern bp_uart_board_def_t g_uarto;
bp_uart_hndl_t uart_hndl;

bp_uart_create(\&g_uart0, \&uart_hndl);

bp_uart_destroy()
<uart/bp_uart.h>

Destroys a UART module instance. When supported, bp_uart_destroy () will free up all the
resources allocated to the UART module instance, including the peripheral driver and internal data
structures. Depending on the memory allocation policy of the default memory allocator it may not be
possible to free previously allocated memory, in that case RTNC_NOT_SUPPORTED is returned and the
UART module instance is left unaffected.

It is not necessary, but strongly recommended, to disable a UART instance by calling bp_uart_dis()
before attempting to destroy it. This helps ensure that no race condition exists between the instance
destruction and ongoing transfers.

The result of using a UART module handle after its underlying instance is destroyed is undefined.

Prototype

Attributes

Parameters

Returned
Errors

int bp_uart_destroy (bp_uart_hndl_t hndl,
uint32_t timeout_ms);

Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox X | v

hndl Handle of the UART module instance to destroy.
timeout_ms Timeout value in milliseconds.

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 14 UART | 122

bp_uart_dis()
<uart/bp_uart.h>
Disables a UART interface. bp_uart_dis () will wait for the interface to be idle before disabling it.

The exact side effects of disabling an interface is driver dependent. In general the peripheral is disabled
at the peripheral level, and, when possible, the module clock is gated.

The result of calling bp_uart_dis () or any other functions other than bp_uart_en() or
bp_uart_reset() on an already disabled interface is undefined. With assertion checking enabled,
some drivers will return RTNC_FATAL when attempting to access a disabled interface. The current
enabled/disabled state of an interface can be queried using bp_uart_is_en().

Prototype int bp_uart_dis (bp_uart_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the UART module instance to disable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_hndl_get()
<uart/bp_uart.h>

Returns the driver handle associated with a UART module instance. The underlying driver handle will be
returned through p_drv_hnd1l. The driver handle can be used to perform operations with the driver
interface directly or to access driver specific features.

Prototype int bp_uart_drv_hndl_get (bp_uart_hndl_t hndl,
bp_uart_drv_hndl_t * p_drv_hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v] v | v
Parameters hndl Handle of the UART module instance to query.

p_drv_hndl Pointer to the UART driver handle.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 14 UART 123
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_uart_en()
<uart/bp_uart.h>

Enables a UART interface. Enabling a UART module instance in the disabled or configured state will,
depending on the driver, enable the peripheral clock, de-assert reset, if asserted, and enable
transmission and reception through the UART peripheral.

Calling bp_uart_en() on an enabled UART instance should be without side effect.

Prototype int bp_uart_en (bp_uart_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the UART module instance to enable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_hndl_get()
<uart/bp_uart.h>

Retrieves a previously created UART instance handle by name. If found, the result is returned through
the p_hnd1 argument, otherwise RTNC_NOT_FOUND is returned and p_hnd1 is left as it was before the
call to bp_uart_hnd1l_get().

The name of an instance is set in the bp_uart_board_def_t board definition passed to
bp_uart_create().

Prototype int bp_uart_hndl_get (p_if_name,
bp_uart_hndl_t x p_hndl);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
X v v v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight

Parameters p_if_name Name of the UART instance to retrieve.
p_hndl Pointer to the UART interface handle.
Returned RTNC_SUCCESS
Errors RTNC_NOT_FOUND
RTNC_FATAL

bp_uart_is_en()
<uart/bp_uart.h>

Chapter 14 UART | 124

Returns the enabled/disabled state of a UART interface. If the call is successful the state of the UART
interface is returned through the argument p_is_en.

The state of an interface is checked atomically in a non-blocking way. As such, bp_uart_is_en() can
be called while another operation is in progress without blocking or from an interrupt service routine.

Prototype

Attributes

Parameters

Returned
Errors

int bp_uart_is_en (bp_uart_hndl_t hndl,
bool * p_is_en);

Blocking | ISR-safe | Criticalsafe | Thread-safe

X v v v
hndl Handle of the UART module instance to query.
p_is_en Interface state, true if enabled false otherwise.

RTNC_SUCCESS
RTNC_FATAL

bp_uart_release()
<uart/bp_uart.h>

Releases exclusive access to a UART interface.

bp_uart_release() has no effect in a bare-metal environment.

Prototype

Attributes

int bp_uart_release (bp_uart_hndl_t hndl);

Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

X X X v

BASEplatform APl Reference Manual

www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 14 UART 125
Parameters hndl Handle of the UART module instance to release.

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_uart_reset()
<uart/bp_uart.h>

Resets a UART module instance. Upon a successful call to bp_uart_reset () the UART interface is
left in the created state, equivalent to the state a newly created instance. Before using the instance
again, it must be reconfigured and enabled, see bp_uart_cfg_set() and bp_uart_en().

Any asynchronous transfer in progress will be aborted without calling their callback functions.

Prototype int bp_uart_reset (bp_uart_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the UART interface to reset.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_rx()
<uart/bp_uart.h>

Receives data. Receives up to len bytes from a UART interface into buffer p_buf. On completion, the
actual number of bytes received is returned through p_recv_1len if it's not NULL.

When a timeout value of O is specified, the UART driver will return any data, up to len bytes, that is
available from the receive FIFO and return immediately. If 1en bytes were read from the FIFO,
RTNC_SUCCESS is returned, otherwise RTNC_TIMEOUT is returned.

If supported by the UART driver and the underlying hardware, receive errors, such as parity, framing,
and breaks will cause an immediate return with an RTNC_IO_ERR error. The number of bytes read up
to that point is then returned through p_recv_1len. It is driver dependent whether bytes with an error
detected are written to the receive buffer or discarded. See the driver's documentation for details on
how invalid bytes are handled.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 14 UART | 126

When bp_uart_rx () returns with an RTNC_IO_ERR error, it is driver specific whether or not the
invalid bytes are written to the receive buffer. When it is, the returned number of bytes read includes
the invalid data. See the driver’'s documentation for details.

A NULL p_rx_1len can be passed if the number of bytes read is of no interest to the caller.

Prototype int bp_uart_rx (bp_uart_hndl_t hndl,
void * p_buf,
size_t len,
size_t % p_rx_len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the UART modules instance to use for reception.
p_buf Pointer to the buffer that will receive the data.
len Length of the data to receive in bytes.
p_rx_len Return pointer of the actual number of bytes read, can be NULL.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

bp_uart_rx_async()
<uart/bp_uart.h>

Receives data asynchronously. Performs an asynchronous receive operation according to the
parameters of the p_tf argument, see the bp_uart_tf_t documentation for an explanation of the
transfer parameters. Upon successfully starting a transfer, the function returns immediately. The
callback specified in the p_tf structure will be called when the transfer is finished. If no callback is
specified, a fire and forget transfer will be performed, where the entire operation will be executed in the
background. Care should be taken when using such transfers as it’s not possible for the application to
know if the transfer succeeded.

The timeout argument timeout_ms specifies the amount of time to wait for the channel to be
available. The timeout value has no impact on the asynchronous transfer operation once started.

When bp_uart_tx_async() returns with an RTNC_TIMEOUT error, the transfer is not started and
the callback function specified in p_tf won't be called.

The structure referenced by p_tf must be valid for the entire asynchronous transfer operation and may
be accessed by the UART driver. Upon returning, the original state of the transfer descriptor will be

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 14 UART | 127

preserved. p_tf will be passed verbatim to the callback and may be modified within the user callback
to perform an additional transfer from the callback.

The p_ctxt member of the p_tf transfer descriptor can be used to pass user context information to
the callback.

Prototype int bp_uart_rx_async (bp_uart_hndl_t hndl,
bp_uart_tf_t* p_tf,
uint32_t timeout_ms) ;
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the UART module instance to use for reception.
p_tf Transfer parameters.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_rx_async_abort()
<uart/bp_uart.h>

Aborts an asynchronous reception. Aborts any running asynchronous reception operation. The number
of bytes already received will be returned through p_rx_1len if it's not NULL.

In case of a successful abort, the transfer callback function will be not be called. It is, however, possible
for the transfer to finish just before being aborted in which case bp_uart_tx_async_abort () will
return with RTNC_SUCCESS and the number of bytes received will be 0.

In case no asynchronous reception operation is in progress bp_uart_rx_async_abort () will return
RTNC_SUCCESS and the number of bytes received returned will be 0.

Prototype int bp_uart_rx_async_abort (bp_uart_hndl_t hndl,
size_t % p_rx_len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the UART module instance to abort.
p_rx_len Pointer to the number of bytes received, can be NULL.

timeout_ms Timeout value in milliseconds.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 14 UART 128

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_rx_flush()
<uart/bp_uart.h>

Flushes the receive path. The receive FIFO of the UART interface is cleared, any data pending in the
UART FIFO is discarded.

Prototype int bp_uart_rx_flush (bp_uart_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the UART module to flush.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_rx_idle_wait()
<uart/bp_uart.h>

Waits for a UART interface receive path to be idle.

Prototype int bp_uart_rx_idle_wait (bp_uart_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
vooox] P | v
Parameters hndl Handle of the UART module instance to wait on.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 14 UART | 129

bp_uart_tx()
<uart/bp_uart.h>
Transmits data. Transmits len bytes from buffer p_buf through a UART interface.

The timeout value specifies the amount of time to wait for the channel to be available. The time spent
to perform the transfer is not counted to consider a timeout condition.

UART peripherals do not usually have a way to detect transmission issues. However, for those
peripherals that can, and when the error is not due to a software or internal hardware issue,
RTNC_IO_ERR can be returned by the driver, see the driver's documentation for details.

Drivers are allowed to use an internal timeout, independent of the timeout_ms argument, to detect a
stuck peripheral when a transmit operation is taking longer than expected. An RTNC_FATAL error is
returned in those cases, see the driver's documentation for details.

It is unspecified how many data, if any, was actually transmitted from a failed transfer.

Prototype int bp_uart_tx (bp_uart_hndl_t hndl,
const void * p_buf,
size_t len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the UART module instance to use for transmission.
p_buf Pointer to the buffer to transmit.
len Length of the data to transmit in bytes.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

bp_uart_tx_async()
<uart/bp_uart.h>

Transmits data asynchronously. Performs an asynchronous transmit operation according to the
parameters of the p_tf argument, see the bp_uart_tf_t documentation for an explanation of the
transfer parameters. Upon successfully starting a transfer the function returns immediately. The
callback specified in the p_tf structure will be called when the transfer is finished. If no callback is
specified, a fire and forget transfer will be performed, where the entire operation will be executed in the

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 14 UART | 130

background. Care should be taken when using such transfers as it’s not possible for the application to
know if the transfer succeeded.

The timeout argument timeout_ms specifies the amount of time to wait for the channel to be
available. The timeout value has no impact on the asynchronous transfer operation once started.

When bp_uart_tx_async() returns with an RTNC_TIMEOUT error, the transfer is not started and
the callback function specified in p_tf won't be called.

The structure referenced by p_tf must be valid for the entire asynchronous transfer operation and may
be accessed by the UART driver. Upon returning, the original state of the transfer descriptor will be
preserved. p_tf will be passed verbatim to the callback and may be modified within the user callback
to perform an additional transfer from the callback.

The p_ctxt member of the p_tf transfer descriptor can be used to pass user context information to
the callback.

Prototype int bp_uart_tx_async (bp_uart_hndl_t hndl,
bp_uart_tf_tx p_tf,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the UART module instance to use for transmission.
p_tf Transfer parameters.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_tx_async_abort()
<uart/bp_uart.h>

Aborts an asynchronous transmission. Aborts any running asynchronous transmission operation. The
number of bytes already transmitted will be returned through p_tx_1len if it's not NULL.

In case of a successful abort, the transfer callback function will not be called. It is, however, possible for
a transfer to finish just before being aborted in which case bp_uart_tx_async_abort () will return
with RTNC_SUCCESS and the number of bytes transmitted returned will be 0.

In case no asynchronous transfer operation is in progress bp_uart_tx_async_abort () will return
RTNC_SUCCESS and the number of bytes transmitted will be O.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight

Chapter 14 UART | 131

Prototype int bp_uart_tx_async_abort (bp_uart_hndl_t hndl,
size_t * p_tx_1len,
uint32_t timeout_ms);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

v X X v
Parameters hndl Handle of the UART module instance to abort.
p_tx_Llen Pointer to the number of bytes transmitted, can be NULL.
timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT

RTNC_FATAL
bp_uart_tx_flush()

<uart/bp_uart.h>

Flushes the transmit path. Empty the transmit FIFO of the UART interface. It is unspecified whether any
data written but not yet transmitted is sent or dropped.

Prototype

Attributes

Parameters

Returned
Errors

int bp_uart_tx_flush (bp_uart_hndl_t hndl,

uint32_t timeout_ms);

Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v

hndl Handle of the UART module instance to flush.
timeout_ms Timeout in milliseconds.

RTNC_SUCCESS
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_tx_idle_wait()
<uart/bp_uart.h>

Waits for a UART interface transmit path to be idle.

BASEplatform APl Reference Manual

www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen

Embedded Software Insight Chapter 14 UART 132
Prototype int bp_uart_tx_idle_wait (bp_uart_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
vl ox P | v
Parameters hndl Handle of the UART module instance to wait on.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_action_t

<uart/bp_uart.h>

Asynchronous IO return action. These are the return values possible to a UART asynchronous 10
callback, instructing the driver on the action to be performed. See bp_uart_tx_async(),
bp_uart_rx_async() and bp_uart_async_cb_t for usage details.

Values
BP_UART_ACTION_FINISH Finish normally.
BP_UART_ACTION_RESTART Restart a transfer with the data of the current transfer description
structure.
bp_uart_parity_t

<uart/bp_uart.h>

UART parity type. For use to specify the UART parity setting within the bp_uart_cfg_t configuration
structure.

See bp_uart_cfg_t, bp_uart_cfg_set() and bp_uart_cfg_get() for usage details.

Values
BP_UART_PARITY_NONE No parity.
BP_UART_PARITY_ODD Odd parity.
BP_UART_PARITY_EVEN Even parity.

BP_UART_PARITY_MARK Mark parity.
BP_UART_PARITY_SPACE Space parity.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen
Embedded Software Insight Chapter 14 UART | 133

BP_UART_PARITY_NULL Special invalid value.

bp_uart_stop_bits_t
<uart/bp_uart.h>

UART stop bits configuration. Number of stop bits for use with the bp_uart_cfg_t configuration
structure. Some of these values may be interpreted slightly differently by some drivers, such as 1.5 stop
bits may be interpreted as 2 stop bits if the UART peripheral doesn’t support one and a half stop bits.

See bp_uart_cfg_t, bp_uart_cfg_set() and bp_uart_cfg_get() for usage details.

Values
BP_UART_STOP_BITS_1 One stop bit.
BP_UART_STOP_BITS_1_5 On and a half stop bits.
BP_UART_STOP_BITS_2 Two stop bits.

BP_UART_STOP_BITS_NULL Special invalid value.

bp_uart_async_cb_t
<uart/bp_uart.h>

Asynchronous IO callback function pointer. Callback function pointer type to be used with non-blocking
asynchronous transfers.

When an asynchronous transfer is finished, the callback will be called if set. The status argument will
be one of the following, indicating the result of the transfer:

e RTNC_SUCCESS The transfer finished normally.

e RTNC_IO_ERR An I/O error occurred.

e RTNC_FATAL A fatal error was detected.

Two actions are possible when returning.

e BP_UART_ACTION_FINISH Finish the transfer normally.

e BP_UART_ACTION_RESTART Restart the transfer operation from the updated p_tf transfer
description structure.

The transfer descriptor structure is the same that was passed to the initial call to
bp_uart_tx_async() or bp_uart_rx_async(). It can be modified prior to returning
BP_UART_ACTION_RESTART to restart a transfer immediately from the callback using the updated
transfer descriptor.

See bp_uart_tx_async() and bp_uart_rx_async() for usage details.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen

Embedded Software Insight Chapter 14 UART 134
Prototype bp_uart_action_t bp_uart_async_cbh_t (int status,
size_t tf_len,

bp_uart_tf_t* p_tf);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters status Status of the asynchronous operation.
tf_len Number of bytes actually read or written.
p_tf Pointer to the current transfer.
Returned Return value of type bp_uart_action_t to signal the desired operation (Terminate
Values or restart).

bp_uart_board_def_t
<uart/bp_uart.h>

UART board level hardware definition. Complete definition of a UART interface, including the name,
BSP as well as the SoC level definition structure of type bp_uart_soc_def_t providing the driver and
driver specific parameters. The overall definition of a UART interface should be unique, including the
name, for each UART module instance to prevent conflicts.

BSP definitions are driver specific and usually not required, when that is the case p_bsp_def should be
set to NULL. See the driver’'s documentation for details.

See bp_uart_create() for usage details.

Members
p_soc_def const bp_uart_soc_def_t x SoC level hardware definition.
p_bsp_def const void * Board and application specific definition.

p_name const char * UART peripheral name.

bp_uart_cfg_t

<uart/bp_uart.h>

UART protocol configuration structure. Used to set or return the configuration of a UART interface.
See bp_uart_cfg_set() and bp_uart_cfg_get() for usage details.

Members

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 14 UART 135
baud_rate uint32_t Baud rate.
parity bp_uart_parity_t Parity.

stop_bits bp_uart_stop_bits_t Number of stop bits.

SERITE bp_uart_drv_hndl_t
<uart/bp_uart.h>

UART driver handle. The pointer contained in the handle is private and should not be accessed by
calling code. Used by the application to access the driver directly.

See bp_uart_driver_create_t and the driver documentation for details.
Members

p_hndl void * Pointer to the internal UART driver data.

bp_uart_hnd1l_t

<uart/bp_uart.h>

UART handle. Returned by bp_uart_create(). The pointer contained in the handle is private and
should not be accessed by calling code.

Members

p_hndl bp_uart_inst_t Pointer to the UART module internal instance data.

bp_uart_soc_def_t

<uart/bp_uart.h>
UART module SoC level hardware definition structure.

The UART hardware definition structure is used to describe the peripheral at the SoC level. The
structure specifies the driver to be used as well as a driver specific definition structure usually
specifying the location, clock, interrupt and various other parameters required by each UART drivers.

To be complete, a UART hardware instance also requires a board specific portion. Both this structure
and the BSP structures are referenced by a bp_uart_board_def_t structure to describe a form a
complete UART interface definition.

Members

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Macro

Macro

JBLopen

Embedded Software Insight Chapter 14 UART 136
p_drv const bp_uart_drv_t * Driver associated with this interface.
p_drv_def const void * Driver specific definition structure.

bp_uart_tf_t
<uart/bp_uart.h>

UART transfer setup structure. Used for asynchronous transfers and internally by some drivers.

Members
p_buf void * Memory buffer to transmit from or receive to.
len size_t Length of the data to transmit or receive in bytes.

callback bp_uart_async_ch_t Asynchronous transfer callback function.

p_ctxt void * Optional user context pointer passed to the asyn-
chronous callback.

BP_UART_HNDL_IS_NULL()
<uart/bp_uart.h>

Evaluates if a UART module handle is NULL.

Prototype BP_UART_HNDL_IS_NULL (hndl);
Parameters hndl Handle to be checked.
Expansion true if the handle is NULL, false otherwise.

BP_UART_NULL_HNDL
<uart/bp_uart.h>

NULL UART handle.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Macro

Macro

JBLopen
Embedded Software Insight

BP_UART_PARITY_IS_VALID()
<uart/bp_uart.h>

Checks if UART parity value is valid.

Expansion true if the parity value is valid. false otherwise.

BP_UART_STOP_BITS_IS VALID()
<uart/bp_uart.h>

Checks if UART stop bits value is valid.

Expansion true if the stop bits value is valid. false otherwise.

BASEplatform APl Reference Manual

Chapter 14 UART | 137

www.jblopen.com

https://www.jblopen.com

Macro

Chapter

Error Codes

Generic return code definitions. The descriptions below are a general guideline to the meaning of each
return code. Consult the APl documentation for a detailed list and description of errors that can be

returned by each API.

Unexpected error codes returned by any functions, including error codes outside of the range of defined
error codes should be treated as a fatal error.

RTNC_x
<util/rtnc.h>

Description Return codes.

RTNC_SUCCESS
RTNC_FATAL
RTNC_NO_RESOURCE
RTNC_IO_ERR
RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_NOT_FOUND
RTNC_ALREADY_EXIST
RTNC_ABORT
RTNC_INVALID_OP
RTNC_WANT_READ
RTNC_WANT_WRITE

Function completed successfully.

Fatal error occurred.

Resource allocation failure.

Transfer or peripheral operation failed.
Function timed out.

API, feature or configuration is not supported.
Requested object not found.

Object already created or allocated.
Operation aborted by software.
Invalid operation.

Read operation requested.

Write operation requested.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Macro

Macro

Macro

Macro

Chapter

Architecture Definitions

Definitions used by the architecture module to set the CPU architecture, compiler and endianness.

BP_ARCH_CPU_ARM_V5
<arch/bp_arch_def.h>

ARM v5, for example the ARM9.

BP_ARCH_CPU_ARM_Ve6
<arch/bp_arch_def.h>

ARM vé, for example the ARM11.

BP_ARCH_CPU_ARM_V6M
<arch/bp_arch_def.h>

ARM vém, for example the Cortex-MO.

BP_ARCH_CPU_ARM_V7AR
<arch/bp_arch_def.h>

ARM v7ar, for example the Cortex-A9 or Cortex-R5.

BASEplatform APl Reference Manual

www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 16 Architecture Definitions | 140

Macro BP_ARCH_CPU_ARM_VT7M
<arch/bp_arch_def.h>

ARM v7m, for example the Cortex-M4.

Macro BP_ARCH_CPU_ARM_VS8A
<arch/bp_arch_def.h>

ARM v8a, for example the Cortex-A53.

Macro BP_ARCH_CPU_ARM_V8M
<arch/bp_arch_def.h>

ARM v8a, for example the Cortex-M23.

Macro BP_ARCH_CPU_ARM_VS8R
<arch/bp_arch_def.h>

ARM v8r, for example the Cortex-R52.

Macro BP_ARCH_CPU_LINUX
<arch/bp_arch_def.h>

Linux, any architecture.

Macro BP_ARCH_CPU_MICROBLAZE
<arch/bp_arch_def.h>

Xilinx Microblaze soft processor.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 16 Architecture Definitions | 141

BP_ARCH_CPU_NONE
<arch/bp_arch_def.h>

CPU architectures definitions. The macro BP_ARCH_CPU will be defined to one of the following by the
architecture port.No or invalid architecture.

BP_ARCH_CPU_SPARCVS
<arch/bp_arch_def.h>

SPARC v8.

BP_ARCH_CPU_SPARCV9
<arch/bp_arch_def.h>

SPARC v9.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Chapter

GPIO Driver

The GPIO driver declarations found in this module serves as the basis of GPIO drivers usually used in
combination with the GPIO module to access GPIO peripherals. All GPIO drivers are composed of a
standard set of API expected by the GPIO module in addition to any number of implementation-specific
functions. The driver specific functions can be used by the application to access advanced features of a
GPIO peripheral not exposed through the standard API. Note that usage of those extended
functionalities is non-portable contrary to the standard API. The GPIO module API function
bp_gpio_drv_hndl_get () function can be used to retrieve the driver handle associated with a GPIO
module instance, and can subsequently be used to call the driver directly. See the individual driver’s
documentation for details of the extended functions.

In addition to accessing extended functionalities, an application can access the driver standard API
directly bypassing the GPIO module. This reduces the call overhead. Contrary to most types of drivers,
the GPIO drivers are usually thread-safe by design while other drivers usually require the top-level
modules mutexes to be thread-safe.

Finally, as yet another feature of the GPIO driver API, it can be invoked in a standalone fashion without
a GPIO module instance. This reduces the RAM overhead of using a GPIO peripheral. In this case the
driver create function is called directly by the application in a matter similar to bp_gpio_create() to
instantiate the driver.

bp_gpio_drv_create_t
<gpio/bp_gpio_drv.h>

GPIO driver’s create function.

Prototype int bp_gpio_drv_create_t (constbp_gpio_board_def_t* p_def,
bp_gpio_drv_hnd1l_t * p_hndl);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 17 GPIO Driver | 143
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

oo ox] X | v
Parameters p_def Board definition of the GPIO peripheral to create.

p_hndl Handle to the created GPIO driver instance.

Returned RTNC_SUCCESS

Errors RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

bp_gpio_drv_data_get_t

<gpio/bp_gpio_drv.h>

GPIO driver’s data_get function. Returns the data state of pin number pin of bank bank.

Prototype int bp_gpio_drv_data_get_t (bp_gpio_drv_hndl_t hndl,
uint32_t bank,
uint32_t pin,
uint32_t * data);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox X | v

Parameters hndl Handle of the driver to query.

bank Bank number of the pin to query.
pin Pin number of the pin to query.

data Pointer to the variable that will receive the data.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_drv_data_set_t
<gpio/bp_gpio_drv.h>

GPIO driver’s data_set function. Set the state of pin number pin of bank bank to the data specified by
data.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 17 GPIO Driver | 144
Prototype int bp_gpio_drv_data_set_t (bp_gpio_drv_hndl_t hndl,
uint32_t bank,
uint32_t pin,
uint32_t data);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox] X | v
Parameters hndl Handle of the interface to set.
bank Bank number of the pin to set.
pin Pin number of the pin to set.

data State of the pin to set.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_drv_data_tog_t
<gpio/bp_gpio_drv.h>

Toggle the state of a GPIO pin. Toggle the data of pin number pin of bank bank.

Prototype int bp_gpio_drv_data_tog_t (bp_gpio_drv_hndl_t hndl,
uint32_t bank,
uint32_t pin);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox X | v

Parameters hndl Handle of the interface to toggle.

bank Bank number of the pin to toggle.
pin Pin number of the pin to toggle.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_drv_destroy_t

<gpio/bp_gpio_drv.h>

GPIO driver's destroy function.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 17 GPIO Driver | 145
Prototype int bp_gpio_drv_destroy_t (bp_gpio_drv_hndl_t hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox x | v
Parameters hndl Handle of the GPIO driver instance to destroy.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_drv_dir_get_t
<gpio/bp_gpio_drv.h>

GPIO driver'd dir_get function. Returns the direction of pin number pin of bank bank.

Prototype int bp_gpio_drv_dir_get_t (bp_gpio_drv_hndl_t hndl,
uint32_t bank,
uint32_t pin,
bp_gpio_ dir);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

v X X v
Parameters hndl Handle of the driver to query.
bank Bank number of the pin to query.
pin Pin number of the pin to query.
dir Pointer to the variable that will receive the direction.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_drv_dir_set_t
<gpio/bp_gpio_drv.h>

GPIO driver’s dir_set function. Sets the direction of pin number pin of bank bank to the direction
specified by dir.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 17 GPIO Driver | 146
Prototype int bp_gpio_drv_dir_set_t (bp_gpio_drv_hndl_t hndl,
uint32_t bank,
uint32_t pin,
bp_gpio_dir_t dir);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox] X | v
Parameters hndl Handle of the driver to set.
bank Bank number of the pin to set.
pin Pin number of the pin to set.
dir Direction of the pin to set.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_drv_dis_t

<gpio/bp_gpio_drv.h>

GPIO driver’s disable function.

Prototype int bp_gpio_drv_dis_t (bp_gpio_drv_hndl_t hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] P | v
Parameters hndl Handle of the GPIO driver instance to disable.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_drv_en_t

<gpio/bp_gpio_drv.h>

GPIO driver’s enable function.

Prototype int bp_gpio_drv_en_t (bp_gpio_drv_hndl_t hndl);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 17 GPIO Driver | 147
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] P | v
Parameters hndl Handle of the GPIO driver instance to enable.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

TR bp_gpio_drv_is_en_t
<gpio/bp_gpio_drv.h>

GPIO driver’s is_en function.

Prototype int bp_gpio_drv_is_en_t (bp_gpio_drv_hndl_t hndl,
bool * p_is_en);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v ox] x | v

Parameters hndl Handle of the GPIO driver instance to query.

p_is_en Driver state, true if enabled false otherwise.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_gpio_drv_reset_t
<gpio/bp_gpio_drv.h>

GPIO driver's reset function.

Prototype int bp_gpio_drv_reset_t (bp_gpio_drv_hndl_t hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v

Parameters hndl Handle of the GPIO driver to reset.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Macro

Macro

JBLopen

Embedded Software Insight Chapter 17
Returned RTNC_SUCCESS
Errors RTNC_FATAL

BP_GPIO_DRV_HNDL_IS NULL()
<gpio/bp_gpio_drv.h>

Evaluates if a GPIO driver handle is NULL.

Prototype BP_GPIO_DRV_HNDL_IS_NULL (hndl);
Parameters hndl Handle to be checked.
Expansion true if the handle is NULL, false otherwise.

BP_GPIO _DRV_NULL_HNDL

<gpio/bp_gpio_drv.h>
NULL GPIO driver handle.

BASEplatform APl Reference Manual

GPIO Driver 148

www.jblopen.com

https://www.jblopen.com

Data Type

Chapter

12C Driver

The 12C driver declarations found in this module serves as the basis of 12C drivers usually used in
combination with the 12C module to access 12C peripherals. All 12C drivers are composed of a standard
set of APl expected by the 12C module in addition to any number of implementation specific functions.
The driver specific functions can be used by the application to access advanced features of a 12C
peripheral not exposed through the standard API. Note that usage of those extended functionalities is
non-portable contrary to the standard API. The 12C module API function bp_i2c_drv_hnd1l_get()
function can be used to retrieve the driver handle associated with a I2C module instance, and can
subsequently be used to call the driver directly. See the individual driver’s documentation for details of
the extended functions.

In addition to accessing extended functionalities, an application can access the driver standard API
directly bypassing the 12C module. This reduces the call overhead at the cost of thread-safety as bare
driver functions are usually not thread-safe when called directly. If thread-safety is required while
calling driver functions directly, it is possible to use bp_i2c_acquire() and bp_i2c_release() to
lock the 12C module preventing it from being accessed by other threads.

Finally, as yet another feature of the |2C driver API, it can be invoked in a standalone fashion without a
UART module instance. This reduces the RAM overhead of using an 12C peripheral by dropping the 12C
module mutexes and internal data structures. In this case the driver create function is called directly by
the application in a matter similar to bp_i2c_create() to instantiate the driver. In this case thread
safety has to be managed by the application, either using external mutexes or by ensuring that only one
thread accesses the 12C peripheral.

bp_i2c_drv_cfg_get_t
<i2c/bp_i2c_drv.h>

I2C driver's configuration get function.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 18 12C Driver 150
Prototype int bp_i2c_drv_cfg_get_t (bp_i2c_drv_hndl_t hndl,
bp_i2c_cfg_t * p_cfg,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the 12C driver to query.
p_cfg Pointer to the 12C configuration.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_cfg_set_t
<i2c/bp_i2c_drv.h>

Prototype int bp_i2c_drv_cfg_set_t (bp_i2c_drv_hndl_t hndl,
const bp_i2c_cfg_t* p_cfg,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] X | v
Parameters hndl Handle of the 12C driver to configure.
p_cfg 12C configuration.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_i2c_drv_create_t
<i2c/bp_i2c_drv.h>

I2C driver's open function.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen

Embedded Software Insight Chapter 18 12C Driver 151
Prototype int bp_i2c_drv_create_t (constbp_i2c_board_def_t* p_def,
bp_i2c_drv_hndl_t * p_hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters p_def Board definition of the [2C driver to initialize.

p_hndl Pointer to the newly created 12C interface.

Returned RTNC_SUCCESS

Errors RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

bp_i2c_drv_destroy_t
<i2c/bp_i2c_drv.h>

I2C driver’s destroy function.

Prototype int bp_i2c_drv_destroy_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox] x | v
Parameters hndl Handle of the 12C driver to enable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_FATAL

bp_12c_drv_dis_t

<i2c/bp_i2c_drv.h>

I12C driver’s disable function.

Prototype int bp_i2c_drv_dis_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen

Embedded Software Insight Chapter 18 12C Driver 152
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

oo ox] P | v
Parameters hndl Handle of the 12C driver to disable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_FATAL

bp_12c_drv_en_t

<i2c/bp_i2c_drv.h>

I2C driver’s enable function.

Prototype int bp_i2c_drv_en_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo x X v
Parameters hnd1l Handle of the 12C driver to enable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_flush_t

<i2c/bp_i2c_drv.h>

I12C driver’s flush function.

Prototype int bp_i2c_drv_flush_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen
Embedded Software Insight Chapter 18 12C Driver | 153

Parameters hndl Handle of the interface to flush.
timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_i2c_drv_idle_wait_t
<i2c/bp_i2c_drv.h>

I12C driver’s idle wait function.

Prototype int bp_i2c_drv_idle_wait_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters hndl Handle of the driver to wait.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_FATAL

bp_12c_drv_1s_en_t

<i2c/bp_i2c_drv.h>

I12C driver is_en function.

Prototype int bp_i2c_drv_is_en_t (bp_i2c_drv_hndl_t hndl,
bool * p_is_en);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters hndl Handle of the 12C driver to query.
p_is_en Interface state, true if enabled false otherwise.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 18 12C Driver 154
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_i2c_drv_reset_t
<i2c/bp_i2c_drv.h>

I12C drivers’s reset function.

Prototype int bp_i2c_drv_reset_t (bp_i2c_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the 12C driver to reset.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

SERS bp_i2c_drv_xfer_async_abort_t
<i2c/bp_i2c_drv.h>

[2C driver’s asynchronous transfer abort function.

Prototype int bp_i2c_drv_xfer_async_abort_t (bp_i2c_drv_hndl_t hndl,
size_t * p_tf_len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the interface to abort.
p_tf_len Amount of data transferred.

timeout_ms Timeout value in milliseconds.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 18 12C Driver 155
Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT

RTNC_FATAL

bp_i2c_drv_xfer_async_t
<i2c/bp_i2c_drv.h>

I2C driver asynchronous transfer function.

Prototype int bp_i2c_drv_xfer_async_t (bp_i2c_drv_hndl_t hndl,
bp_i2c_tf_t * p_tf,
uint32_t timeout_ms);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

ool ox] P | v

Parameters hndl Handle of the driver to use for the transfer.

p_tf Transfer parameters.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

SR bp_i2c_drv_xfer_t
<i2c/bp_i2c_drv.h>

I12C driver’s transfer function.

Prototype int bp_i2c_drv_xfer_t (bp_i2c_drv_hndl_t hndl,
bp_i2c_tf_t * p_tf,
size_t * p_tf_1len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Macro

Macro

JBLopen

Embedded Software Insight Chapter 18 12C Driver 156
Parameters hndl Handle of the interface to use.
p_tf Pointer to an bp_1i2c_tf_t structure describing the transfer to per-
form.
p_tf_len

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

BP_I2C_DRV_HNDL_IS_NULL()
<i2c/bp_i2c_drv.h>

Evaluates if an 12C driver handle is NULL.

Prototype BP_I2C_DRV_HNDL_IS_NULL (hndl);
Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.
BP_I2C_DRV_NULL_HNDL

<i2c/bp_i2c_drv.h>

NULL I2C driver handle.

BASEplatform APl Reference Manual

www.jblopen.com

https://www.jblopen.com

Data Type

Chapter

SPI Driver

The SPI driver declarations found in this module serves as the basis of SPI drivers usually used in
combination with the SPI module to access SPI peripherals. All SPI drivers are composed of a standard
set of APl expected by the SPI module in addition to any number of implementation-specific functions.
The driver specific functions can be used by the application to access advanced features of a SPI
peripheral not exposed through the standard API. Note that usage of those extended functionalities is
non-portable contrary to the standard API. The SPI module API function bp_spi_drv_hndl_get()
function can be used to retrieve the driver handle associated with a SPI module instance, and can
subsequently be used to call the driver directly. See the individual driver’s documentation for details of
the extended functions.

In addition to accessing extended functionalities, an application can access the driver standard API
directly bypassing the SPI module. This reduces the call overhead at the cost of thread-safety as bare
driver functions are usually not thread-safe when called directly. If thread-safety is required while
calling driver functions directly, it is possible to use bp_spi_slave_sel() and
bp_spi_slave_desel() to lock the SPI module preventing it from being accessed by other threads.

Finally, as yet another feature of the SPI driver API, it can be invoked in a standalone fashion without a
SPI module instance. This reduces the RAM overhead of using an SPI peripheral by dropping the SPI
module mutexes and internal data structures. In this case the driver create function is called directly by
the application in a matter similar to bp_spi_create() to instantiate the driver. In this case thread
safety has to be managed by the application, either using external mutexes or by ensuring that only one
thread accesses the SPI peripheral.

bp_spi_drv_cfg_get_t
<spi/bp_spi_drv.h>

SPI driver’s cfg_get function.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 19 SPI Driver 158
Prototype int bp_spi_drv_cfg_get_t (bp_spi_drv_hndl_t hndl,
bp_spi_cfg_t * p_cfg,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the SPI driver to query.
p_cfg Pointer to the SPI configuration.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_cfg_set_t
<spi/bp_spi_drv.h>

SPI driver’s cfg_set function.

Prototype int bp_spi_drv_cfg_set_t (bp_spi_drv_hndl_t hnd1l,
const bp_spi_cfg_tx p_cfg,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] X | v
Parameters hndl Handle of the SPI driver to configure.
p_cfg SPI configuration.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_NOT_SUPPORTED
RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 19 SPI Driver | 159

bp_spi_drv_create_t
<spi/bp_spi_drv.h>

SPI driver's create function.

Prototype int bp_spi_drv_create_t (constbp_spi_board_def_t* p_def,
bp_spi_drv_hndl_t * p_hndl);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters p_def Board definition of the SPI peripheral to initialize.

p_hndl Pointer to the newly created SPI driver instance.

Returned RTNC_SUCCESS

Errors RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

bp_spi_drv_destroy_t
<spi/bp_spi_drv.h>

SPI driver’s destroy function.

Prototype int bp_spi_drv_destroy_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters hndl Handle of the SPI driver to destroy.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 19 SPI Driver | 160

bp_spi_drv_dis_t
<spi/bp_spi_drv.h>

SPI driver’s disable function.

Prototype int bp_spi_drv_dis_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the SPI driver to disable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

Data Type bp_sp'i_drv_en_t
<spi/bp_spi_drv.h>

SPI driver’s enable function.

Prototype int bp_spi_drv_en_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the SPI driver to enable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 19 SPI Driver | 161

bp_spi_drv_flush_t
<spi/bp_spi_drv.h>

SPI driver's flush function.

Prototype int bp_spi_drv_flush_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the driver to flush.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BN bp_spi_drv_idle_wait_t
<spi/bp_spi_drv.h>

SPI driver's idle wait function.

Prototype int bp_spi_drv_idle_wait_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the driver to wait.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 19 SPI Driver | 162

bp_spi_drv_is_en_t
<spi/bp_spi_drv.h>

SPI driver’s is_en function.

Prototype int bp_spi_drv_is_en_t (bp_spi_drv_hndl_t hndl,
bool * p_is_en);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox X | v
Parameters hndl Handle of the SPI interface to check.

p_is_en Interface state, true if enabled false otherwise.

Returned RTNC_SUCCESS
Errors RTNC_FATAL

SERTS bp_spi_drv_reset_t

<spi/bp_spi_drv.h>

SPI driver’s reset function.

Prototype int bp_spi_drv_reset_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the SPI interface to reset.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_slave_desel_t
<spi/bp_spi_drv.h>

SPI driver’s slave deselect function.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 19 SPI Driver 163
Prototype int bp_spi_drv_slave_desel_t (bp_spi_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters hndl Handle of the SPI driver to wait on.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_slave_sel_t
<spi/bp_spi_drv.h>

SPI driver’d slave select function.

Prototype int bp_spi_drv_slave_sel_t (bp_spi_drv_hndl_t hndl,
uint32_t ss_id,
uint32_t timeout_ms);

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox X | v

Parameters hndl Handle of the SPI driver to wait on.

ss_1id Numeric id of the slave select line to assert.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_xfer_async_abort_t
<spi/bp_spi_drv.h>

SPI driver’s asynchronous transfer abort function.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 19 SPI Driver 164
Prototype int bp_spi_drv_xfer_async_abort_t (bp_spi_drv_hndl_t hndl,
size_t * p_tx_len,
size_t * p_rx_len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox] X | v
Parameters hndl Handle of the driver to abort.
p_tx_Llen Pointer to the amount of data already transferred.
p_rx_len Pointer to the amount of data already received.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_spi_drv_xfer_async_t
<spi/bp_spi_drv.h>

SPI driver’s asynchronous transfer function.

Prototype int bp_spi_drv_xfer_async_t (bp_spi_drv_hndl_t hndl,
bp_spi_tf_t p_tf,
uint32_t timeout_ms) ;

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

voolox P | v

Parameters hndl Handle of the driver to use for the transfer.

p_tf Transfer parameters.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Macro

Macro

JBLopen
Embedded Software Insight

bp_spi_drv_xfer_t
<spi/bp_spi_drv.h>

SPI driver’s xfer function.

Chapter 19 SPI Driver | 165

Prototype int bp_spi_drv_xfer_t (bp_spi_drv_hndl_t hndl,
bp_spi_tf_t* p_tf,
size_t * p_tf_1len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the interface to use for the transfer.
p_tf Pointer to an bp_spi_tf_t structure describing the transfer to perform.
p_tf_len Amount of data actually transferred.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

BP_SPI_DRV_HNDL_IS_NULL()
<spi/bp_spi_drv.h>

Evaluates if an SPI driver handle is NULL.

Prototype BP_SPI_DRV_HNDL_IS_NULL (hndl);
Parameters hndl Handle to be checked.

Expansion true if the handle is NULL, false otherwise.
BP_SPI_DRV_NULL_HNDL

<spi/bp_spi_drv.h>
NULL SPI driver handle.

BASEplatform APl Reference Manual

www.jblopen.com

https://www.jblopen.com

Data Type

Chapter

UART Driver

The UART driver declarations found in this module serves as the basis of UART drivers usually used in
combination with the UART module to access UART peripherals. All UART drivers are composed of a
standard set of APl expected by the UART module in addition to any number of implementation-specific
functions. The driver specific functions can be used by the application to access advanced features of a
UART peripheral not exposed through the standard API. Note that usage of those extended
functionalities is non-portable contrary to the standard API. The UART module API function
bp_uart_drv_hndl_get () function can be used to retrieve the driver handle associated with a
UART module instance, and can subsequently be used to call the driver directly. See the individual
driver’s documentation for details of the extended functions.

In addition to accessing extended functionalities, an application can access the driver standard API
directly bypassing the UART module. This reduces the call overhead at the cost of thread-safety as bare
driver functions are usually not thread-safe when called directly. If thread-safety is required while
calling driver functions directly, it is possible to use bp_uart_acquire() and bp_uart_release()
to lock the UART module preventing its access by other threads.

Finally, as yet another feature of the UART driver API, it can be invoked in a standalone fashion without
a UART module instance. This reduces the RAM overhead of using a UART peripheral by dropping the
UART module mutexes and internal data structures. In this case the driver create function is called
directly by the application in a matter similar to bp_uart_create() to instantiate the driver. In this
case thread safety has to be managed by the application, either using external mutexes or by ensuring
that only one thread accesses the UART peripheral.

bp_uart_cfg_get_t
<uart/bp_uart_drv.h>

UART driver’s cfg_get function.

Prototype int bp_uart_cfg_get_t (bp_uart_drv_hndl_t hndl,
bp_uart_cfg_t * p_cfg);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen
Embedded Software Insight Chapter 20 UART Driver | 167

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] X | v

Parameters hndl Handle of the UART driver to query.
p_cfg Pointer to the UART configuration.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_cfg_set_t
<uart/bp_uart_drv.h>

UART driver’s cfg_set function.

Prototype int bp_uart_drv_cfg_set_t (bp_uart_drv_hndl_t hndl,
const bp_uart_cfg_t* p_cfg,
uint32_t timeout_ms) ;
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters hndl Handle of the UART drover to configure.
p_cfg UART configuration.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_NOT_SUPPORTED
RTNC_FATAL

bp_uart_drv_create_t
<uart/bp_uart_drv.h>

UART driver’s create function.

Prototype int bp_uart_drv_create_t (constbp_uart_board_def_t * p_def,
bp_uart_drv_hndl_t * p_hndl);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 20 UART Driver | 168
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

oo ox] X | v
Parameters p_def Board definition of the UART peripheral to initialize.

p_hndl Pointer to the newly created UART driver instance.

Returned RTNC_SUCCESS

Errors RTNC_ALREADY_EXIST
RTNC_NO_RESOURCE
RTNC_FATAL

bp_uart_drv_destroy_t

<uart/bp_uart_drv.h>

UART driver’s destroy function.

Prototype int bp_uart_drv_destroy_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the UART driver instance to enable.

timeout_ms

Returned RTNC_SUCCESS

Errors RTNC_NOT_SUPPORTED
RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_dis_t

<uart/bp_uart_drv.h>

UART driver'd disable function.

Prototype int bp_uart_drv_dis_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 20 UART Driver | 169
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

v X X v
Parameters hndl Handle of the UART driver to disable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_en_t

<uart/bp_uart_drv.h>

UART driver’s enable function.

Prototype int bp_uart_drv_en_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
ool ox] X | v
Parameters hndl Handle of the UART driver to enable.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_1is_en_t
<uart/bp_uart_drv.h>

UART driver’s is_en function.

Prototype int bp_uart_drv_is_en_t (bp_uart_drv_hndl_t hndl,
bool * p_is_en);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 20 UART Driver | 170
Parameters hndl Handle of the UART driver to query.
p_is_en Interface state, true if enabled false otherwise.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_uart_drv_reset_t

<uart/bp_uart_drv.h>

UART driver’s reset function.

Prototype int bp_uart_drv_reset_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox X | v
Parameters hndl Handle of the UART driver to reset.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_rx_async_abort_t
<uart/bp_uart_drv.h>

UART driver’s asynchronous receive abort function.

Prototype int bp_uart_drv_rx_async_abort_t (bp_uart_drv_hndl_t hndl,
size_t * p_rx_1len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the driver to abort.
p_rx_len Pointer to the number of bytes received, can be NULL.

timeout_ms Timeout value in milliseconds.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen

Embedded Software Insight Chapter 20 UART Driver | 171
Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT

RTNC_FATAL

bp_uart_drv_rx_async_t
<uart/bp_uart_drv.h>

UART driver’s asynchronous receive function.

Prototype int bp_uart_drv_rx_async_t (bp_uart_drv_hndl_t hndl,
bp_uart_tf_t p_tf,
uint32_t timeout_ms) ;

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe

oo ox] X | v

Parameters hndl Handle of the driver to use for reception.

p_tf Transfer parameters.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_rx_flush_t
<uart/bp_uart_drv.h>

UART driver’s receive flush function.

Prototype int bp_uart_drv_rx_flush_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters hndl Handle of the driver to flush.

timeout_ms Timeout in milliseconds.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 20 UART Driver | 172
Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT

RTNC_FATAL

bp_uart_drv_rx_idle_wait_t
<uart/bp_uart_drv.h>

UART driver’s receive idle wait function.

Prototype int bp_uart_drv_rx_idle_wait_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
volox P | v
Parameters hnd1l Handle of the driver to wait.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_rx_t

<uart/bp_uart_drv.h>

UART driver’s receive function.

Prototype int bp_uart_drv_rx_t (bp_uart_drv_hndl_t hndl,
void * p_buf,
size_t len,
size_t * p_rx_len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
oo ox] X | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 20 UART Driver | 173
Parameters hndl Handle of the driver to use for reception.

p_buf Pointer to the buffer that will receive the data.

len Length of the data to receive in bytes.

p_rx_1len

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

bp_uart_drv_tx_async_abort_t
<uart/bp_uart_drv.h>

UART driver’s asynchronous transmit abort function.

Prototype int bp_uart_drv_tx_async_abort_t (bp_uart_drv_hndl_t hndl,
size_t * p_tx_1len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters hndl Handle of the driver to abort.
p_tx_len Pointer to the number of bytes transmitted, can be NULL.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_tx_async_t
<uart/bp_uart_drv.h>

UART driver’s asynchronous transmit function.

Prototype int bp_uart_drv_tx_async_t (bp_uart_drv_hndl_t hndl,
bp_uart_tf_t p_tf,
uint32_t timeout_ms) ;

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Data Type

Data Type

JBLopen

Embedded Software Insight Chapter 20 UART Driver | 174
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
v X X v
Parameters hndl Handle of the driver to use for reception.
p_tf Transfer parameters.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_tx_flush_t
<uart/bp_uart_drv.h>

UART driver’s transmit flush function.

Prototype int bp_uart_drv_tx_flush_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
vooox P | v
Parameters hndl Handle of the driver to flush.

timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_tx_idle_wait_t
<uart/bp_uart_drv.h>

UART driver’s transmit idle wait function.

Prototype int bp_uart_drv_tx_idle_wait_t (bp_uart_drv_hndl_t hndl,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 20 UART Driver | 175

Parameters hndl Handle of the driver to wait.
timeout_ms Timeout in milliseconds.

Returned RTNC_SUCCESS
Errors RTNC_TIMEOUT
RTNC_FATAL

bp_uart_drv_tx_t

<uart/bp_uart_drv.h>

UART driver’s transmit function.

Prototype int bp_uart_drv_tx_t (bp_uart_drv_hndl_t hndl,
const void * p_buf,
size_t len,
uint32_t timeout_ms);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
voolox P | v
Parameters hndl Handle of the driver to use for transmission.
p_buf Pointer to the buffer to transmit.
len Length of the data to transmit in bytes.

timeout_ms Timeout value in milliseconds.

Returned RTNC_SUCCESS

Errors RTNC_TIMEOUT
RTNC_IO_ERR
RTNC_FATAL

BP_UART_DRV_HNDL_IS_NULL()

<uart/bp_uart_drv.h>

Evaluates if a UART driver handle is NULL.

Prototype BP_UART_DRV_HNDL_IS_NULL (hndl);

Parameters hndl Handle to be checked.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen
Embedded Software Insight Chapter 20 UART Driver | 176

Expansion true if the handle is NULL, false otherwise.

BP_UART_DRV_NULL_HNDL

<uart/bp_uart_drv.h>

NULL UART driver handle.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

Function

Chapter

Timer Implementation

The declarations found in this module serves as the basis of the timer module implementations. User
application should not usually call these functions directly and should instead use the timer module API.

bp_timer_impl_halt()
<timer/bp_timer_impl.h>
Halts the timer processing.

This is an internal function and should not be called from application code.

Prototype int bp_timer_impl_halt ();

Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

Returned RTNC_SUCCESS

Errors RTNC_FATAL

bp_timer_impl_init()
<timer/bp_timer_impl.h>
Timer implementation init function.

This is an internal function and should not be called from application code.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 21 Timer Implementation | 178
Prototype int bp_timer_impl_init ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | ox] v | v
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_timer_impl_next_update()
<timer/bp_timer_impl.h>
Updates the next expiration target.

This is an internal function and should not be called from application code.

Prototype int bp_timer_impl_next_update (uint64_t target);
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v
Parameters target Updated target.
Returned RTNC_SUCCESS
Errors RTNC_FATAL

bp_timer_impl_resume()
<timer/bp_timer_impl.h>
Resumes the timer processing.

This is an internal function and should not be called from application code.

Prototype int bp_timer_impl_resume ();
Attributes Blocking ‘ ISR-safe ‘ Critical safe ‘ Thread-safe
x | v v | v

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

JBLopen

Embedded Software Insight Chapter 21 Timer Implementation | 179
Returned RTNC_SUCCESS
Errors RTNC_FATAL

BASEplatform API Reference Manual www.jblopen.com

https://www.jblopen.com

Chapter

Document Revision History

The revision history of the BASEplatform user manual and reference manuals can be found within the
BASEplatform source package.

BASEplatform APl Reference Manual www.jblopen.com

https://www.jblopen.com

	Overview
	About the BASEplatform
	Elements of the API Reference
	Functions
	Data Types
	Macros

	Function Attributes
	Blocking
	ISR-Safe
	Critical Safe
	Thread-Safe
	Function Attributes in Header Files

	API Conventions
	Naming
	Error Handling
	Timeouts
	Numerical Values of Macros and Enumeration Constants

	Driver API
	Advanced Driver API
	Accessing the Drivers Directly

	Architecture
	bp_irq_flag_t
	BP_ARCH_ALIGN_MAX
	BP_ARCH_COMPILER
	BP_ARCH_CORE_ID_GET
	BP_ARCH_CPU
	BP_ARCH_DEBUG_BREAK
	BP_ARCH_ENDIAN
	BP_ARCH_INT_DIS
	BP_ARCH_INT_EN
	BP_ARCH_IS_CRIT
	BP_ARCH_IS_INT
	BP_ARCH_IS_INT_OR_CRIT
	BP_ARCH_MB
	BP_ARCH_PANIC
	BP_ARCH_RMB
	BP_ARCH_SEV
	BP_ARCH_WFE
	BP_ARCH_WFI
	BP_ARCH_WMB

	Cache Management
	bp_cache_dcache_inv_all()
	bp_cache_dcache_max_line_get()
	bp_cache_dcache_min_line_get()
	bp_cache_dcache_range_clean()
	bp_cache_dcache_range_cleaninv()
	bp_cache_dcache_range_inv()
	bp_cache_icache_inv_all()

	Spinlocks
	bp_critical_section_enter()
	bp_critical_section_exit()
	bp_slock_acquire()
	bp_slock_acquire_irq_dis()
	bp_slock_acquire_irq_save()
	bp_slock_release()
	bp_slock_release_irq_en()
	bp_slock_release_irq_restore()
	bp_slock_t

	Time
	bp_time_freq_get()
	bp_time_get()
	bp_time_get32()
	bp_time_get_ms()
	bp_time_get_ms32()
	bp_time_get_ns()
	bp_time_get_ns32()
	bp_time_halt()
	bp_time_init()
	bp_time_ms_to_raw()
	bp_time_ms_to_raw32()
	bp_time_ns_to_raw()
	bp_time_ns_to_raw32()
	bp_time_raw_to_ms()
	bp_time_raw_to_ms32()
	bp_time_raw_to_ns()
	bp_time_raw_to_ns32()
	bp_time_resume()
	bp_time_sleep()
	bp_time_sleep32()
	bp_time_sleep_busy()
	bp_time_sleep_busy32()
	bp_time_sleep_busy_ms()
	bp_time_sleep_busy_ns()
	bp_time_sleep_ms()
	bp_time_sleep_ns()
	bp_time_sleep_yield()
	bp_time_sleep_yield32()
	bp_time_sleep_yield_ms()
	bp_time_sleep_yield_ns()

	Timers
	bp_timer_create()
	bp_timer_destroy()
	bp_timer_halt()
	bp_timer_init()
	bp_timer_restart()
	bp_timer_restart_ms()
	bp_timer_restart_ns()
	bp_timer_resume()
	bp_timer_start()
	bp_timer_start_ms()
	bp_timer_start_ns()
	bp_timer_stop()
	bp_timer_target_get()
	bp_timer_action_t
	bp_timer_cb_t
	bp_timer_hndl_t

	Platform Clocks
	bp_clock_dis()
	bp_clock_en()
	bp_clock_freq_get()
	bp_clock_gate_id_is_valid()
	bp_clock_id_is_valid()
	bp_clock_is_en()

	Platform Resets
	bp_periph_reset_assert()
	bp_periph_reset_deassert()
	bp_periph_reset_id_is_valid()
	bp_periph_reset_is_asserted()

	Interrupt Management
	bp_int_arg_get()
	bp_int_dis()
	bp_int_en()
	bp_int_id_is_valid()
	bp_int_init()
	bp_int_prio_get()
	bp_int_prio_highest_get()
	bp_int_prio_lowest_get()
	bp_int_prio_next_get()
	bp_int_prio_prev_get()
	bp_int_prio_set()
	bp_int_reg()
	bp_int_src_dis()
	bp_int_src_en()
	bp_int_src_is_en()
	bp_int_trig()
	bp_int_type_get()
	bp_int_type_set()
	bp_int_type_t
	bp_int_handler_t
	BP_INT_ID_NONE

	Interrupt SMP Extension
	bp_int_smp_src_dis()
	bp_int_smp_src_en()
	bp_int_smp_trig()

	GPIO
	bp_gpio_create()
	bp_gpio_data_get()
	bp_gpio_data_set()
	bp_gpio_data_tog()
	bp_gpio_destroy()
	bp_gpio_dir_get()
	bp_gpio_dir_set()
	bp_gpio_dis()
	bp_gpio_drv_hndl_get()
	bp_gpio_en()
	bp_gpio_hndl_get()
	bp_gpio_is_en()
	bp_gpio_reset()
	bp_gpio_dir_t
	bp_gpio_board_def_t
	bp_gpio_drv_hndl_t
	bp_gpio_hndl_t
	bp_gpio_soc_def_t
	BP_GPIO_HNDL_IS_NULL
	BP_GPIO_NULL_HNDL

	I2C
	bp_i2c_acquire()
	bp_i2c_addr_is_10b()
	bp_i2c_addr_is_valid()
	bp_i2c_cfg_get()
	bp_i2c_cfg_set()
	bp_i2c_create()
	bp_i2c_destroy()
	bp_i2c_dis()
	bp_i2c_drv_hndl_get()
	bp_i2c_en()
	bp_i2c_flush()
	bp_i2c_hndl_get()
	bp_i2c_idle_wait()
	bp_i2c_is_en()
	bp_i2c_release()
	bp_i2c_reset()
	bp_i2c_xfer()
	bp_i2c_xfer_async()
	bp_i2c_xfer_async_abort()
	bp_i2c_action_t
	bp_i2c_dir_t
	bp_i2c_async_cb_t
	bp_i2c_board_def_t
	bp_i2c_cfg_t
	bp_i2c_drv_hndl_t
	bp_i2c_hndl_t
	bp_i2c_soc_def_t
	bp_i2c_tf_t
	BP_I2C_10B_SLV_ADDR_MASK
	BP_I2C_HNDL_IS_NULL
	BP_I2C_MAX_10B_SLV_ADDR
	BP_I2C_MAX_SLV_ADDR
	BP_I2C_MIN_10B_SLV_ADDR
	BP_I2C_NULL_HNDL
	BP_I2C_SLV_ADDR_MASK

	SPI
	bp_spi_cfg_get()
	bp_spi_cfg_set()
	bp_spi_create()
	bp_spi_destroy()
	bp_spi_dis()
	bp_spi_drv_hndl_get()
	bp_spi_en()
	bp_spi_flush()
	bp_spi_hndl_get()
	bp_spi_idle_wait()
	bp_spi_is_en()
	bp_spi_reset()
	bp_spi_slave_desel()
	bp_spi_slave_sel()
	bp_spi_xfer()
	bp_spi_xfer_async()
	bp_spi_xfer_async_abort()
	bp_spi_action_t
	bp_spi_async_cb_t
	bp_spi_board_def_t
	bp_spi_cfg_t
	bp_spi_drv_hndl_t
	bp_spi_hndl_t
	bp_spi_soc_def_t
	bp_spi_tf_t
	BP_SPI_HNDL_IS_NULL
	BP_SPI_NULL_HNDL
	BP_SPI_SS_NONE

	UART
	bp_uart_acquire()
	bp_uart_cfg_get()
	bp_uart_cfg_set()
	bp_uart_create()
	bp_uart_destroy()
	bp_uart_dis()
	bp_uart_drv_hndl_get()
	bp_uart_en()
	bp_uart_hndl_get()
	bp_uart_is_en()
	bp_uart_release()
	bp_uart_reset()
	bp_uart_rx()
	bp_uart_rx_async()
	bp_uart_rx_async_abort()
	bp_uart_rx_flush()
	bp_uart_rx_idle_wait()
	bp_uart_tx()
	bp_uart_tx_async()
	bp_uart_tx_async_abort()
	bp_uart_tx_flush()
	bp_uart_tx_idle_wait()
	bp_uart_action_t
	bp_uart_parity_t
	bp_uart_stop_bits_t
	bp_uart_async_cb_t
	bp_uart_board_def_t
	bp_uart_cfg_t
	bp_uart_drv_hndl_t
	bp_uart_hndl_t
	bp_uart_soc_def_t
	bp_uart_tf_t
	BP_UART_HNDL_IS_NULL
	BP_UART_NULL_HNDL
	BP_UART_PARITY_IS_VALID
	BP_UART_STOP_BITS_IS_VALID

	Error Codes
	RTNC_*

	Architecture Definitions
	BP_ARCH_CPU_ARM_V5
	BP_ARCH_CPU_ARM_V6
	BP_ARCH_CPU_ARM_V6M
	BP_ARCH_CPU_ARM_V7AR
	BP_ARCH_CPU_ARM_V7M
	BP_ARCH_CPU_ARM_V8A
	BP_ARCH_CPU_ARM_V8M
	BP_ARCH_CPU_ARM_V8R
	BP_ARCH_CPU_LINUX
	BP_ARCH_CPU_MICROBLAZE
	BP_ARCH_CPU_NONE
	BP_ARCH_CPU_SPARCV8
	BP_ARCH_CPU_SPARCV9

	GPIO Driver
	bp_gpio_drv_create_t
	bp_gpio_drv_data_get_t
	bp_gpio_drv_data_set_t
	bp_gpio_drv_data_tog_t
	bp_gpio_drv_destroy_t
	bp_gpio_drv_dir_get_t
	bp_gpio_drv_dir_set_t
	bp_gpio_drv_dis_t
	bp_gpio_drv_en_t
	bp_gpio_drv_is_en_t
	bp_gpio_drv_reset_t
	BP_GPIO_DRV_HNDL_IS_NULL
	BP_GPIO_DRV_NULL_HNDL

	I2C Driver
	bp_i2c_drv_cfg_get_t
	bp_i2c_drv_cfg_set_t
	bp_i2c_drv_create_t
	bp_i2c_drv_destroy_t
	bp_i2c_drv_dis_t
	bp_i2c_drv_en_t
	bp_i2c_drv_flush_t
	bp_i2c_drv_idle_wait_t
	bp_i2c_drv_is_en_t
	bp_i2c_drv_reset_t
	bp_i2c_drv_xfer_async_abort_t
	bp_i2c_drv_xfer_async_t
	bp_i2c_drv_xfer_t
	BP_I2C_DRV_HNDL_IS_NULL
	BP_I2C_DRV_NULL_HNDL

	SPI Driver
	bp_spi_drv_cfg_get_t
	bp_spi_drv_cfg_set_t
	bp_spi_drv_create_t
	bp_spi_drv_destroy_t
	bp_spi_drv_dis_t
	bp_spi_drv_en_t
	bp_spi_drv_flush_t
	bp_spi_drv_idle_wait_t
	bp_spi_drv_is_en_t
	bp_spi_drv_reset_t
	bp_spi_drv_slave_desel_t
	bp_spi_drv_slave_sel_t
	bp_spi_drv_xfer_async_abort_t
	bp_spi_drv_xfer_async_t
	bp_spi_drv_xfer_t
	BP_SPI_DRV_HNDL_IS_NULL
	BP_SPI_DRV_NULL_HNDL

	UART Driver
	bp_uart_cfg_get_t
	bp_uart_drv_cfg_set_t
	bp_uart_drv_create_t
	bp_uart_drv_destroy_t
	bp_uart_drv_dis_t
	bp_uart_drv_en_t
	bp_uart_drv_is_en_t
	bp_uart_drv_reset_t
	bp_uart_drv_rx_async_abort_t
	bp_uart_drv_rx_async_t
	bp_uart_drv_rx_flush_t
	bp_uart_drv_rx_idle_wait_t
	bp_uart_drv_rx_t
	bp_uart_drv_tx_async_abort_t
	bp_uart_drv_tx_async_t
	bp_uart_drv_tx_flush_t
	bp_uart_drv_tx_idle_wait_t
	bp_uart_drv_tx_t
	BP_UART_DRV_HNDL_IS_NULL
	BP_UART_DRV_NULL_HNDL

	Timer Implementation
	bp_timer_impl_halt()
	bp_timer_impl_init()
	bp_timer_impl_next_update()
	bp_timer_impl_resume()

	Document Revision History

